Sum and product of all linear combinations
Let $K$ be a compact non-empty subset of $mathbb{R}^N$. If $x in mathbb{R}^N$ and if $(k_1, k_2, dots, k_N), k_i in mathbb{Z}_+$, consider the function
$$x mapsto x_1^{k_1}x_2^{k_2}...x_N^{k_N}.$$
I want to show that the set $mathcal{A}$ of all linear combinations of such functions is a $mathbb{R}$-subalgebra of $C(K)$, but I'm struggling specifically with proving that the sum and the product of elements of $mathcal{A}$ belongs to $mathcal{A}$ cause I've very much confused with manipulating the indexes.
$textbf{My attempt:}$
Consider the set
$$mathcal{A} = Big{ sum_{i=1}^{N}alpha_iprod_{i=1}^{N} x_i^{k_i}: x_i, alpha_i in mathbb{R}, k_i in mathbb{Z}_+ Big}$$
1. $p, q in mathcal{A} Rightarrow pq in mathcal{A}$
Take $p, q in mathcal{A}$ such that $p = sum_{i=1}^{N}alpha_iprod_{i=1}^{N} x_i^{k_i}$ and $q = sum_{j=1}^{N}tilde{alpha}_jprod_{j=1}^{N} x_j^{tilde{k}_j}$, then it follows:
begin{align*}
p(x)q(x) &= Big(sum_{i=1}^{N}alpha_iprod_{i=1}^{N} x_i^{k_i} Big) Big(sum_{j=1}^{N}tilde{alpha_j}prod_{j=1}^{N} x_j^{tilde{k}_j} Big) \
&= sum_{l=1}^{2N}c_l prod_{i=1}^{l}x_i^{k_i}, \
&= (pq)(x)
end{align*}
with $c_l = sum_{m=1}^{l}alpha_mtilde{alpha}_{l-m}$.
- $p, q in mathcal{A} Rightarrow p+q in mathcal{A}$
Take the same $p, q in mathcal{A}$ written above, then
begin{align*}
p(x) + q(x) &= Big(sum_{i=1}^{N}alpha_iprod_{i=1}^{N} x_i^{k_i} Big) + Big(sum_{j=1}^{N}tilde{alpha_j}prod_{j=1}^{N} x_j^{tilde{k}_j} Big) \
&= sum_{l=1}^{N} (alpha_l + tilde{alpha}_l)prod_{l=1}^{N}x_l^{k_l} \
&= (p + q)(x)
end{align*}
real-analysis linear-algebra polynomials
add a comment |
Let $K$ be a compact non-empty subset of $mathbb{R}^N$. If $x in mathbb{R}^N$ and if $(k_1, k_2, dots, k_N), k_i in mathbb{Z}_+$, consider the function
$$x mapsto x_1^{k_1}x_2^{k_2}...x_N^{k_N}.$$
I want to show that the set $mathcal{A}$ of all linear combinations of such functions is a $mathbb{R}$-subalgebra of $C(K)$, but I'm struggling specifically with proving that the sum and the product of elements of $mathcal{A}$ belongs to $mathcal{A}$ cause I've very much confused with manipulating the indexes.
$textbf{My attempt:}$
Consider the set
$$mathcal{A} = Big{ sum_{i=1}^{N}alpha_iprod_{i=1}^{N} x_i^{k_i}: x_i, alpha_i in mathbb{R}, k_i in mathbb{Z}_+ Big}$$
1. $p, q in mathcal{A} Rightarrow pq in mathcal{A}$
Take $p, q in mathcal{A}$ such that $p = sum_{i=1}^{N}alpha_iprod_{i=1}^{N} x_i^{k_i}$ and $q = sum_{j=1}^{N}tilde{alpha}_jprod_{j=1}^{N} x_j^{tilde{k}_j}$, then it follows:
begin{align*}
p(x)q(x) &= Big(sum_{i=1}^{N}alpha_iprod_{i=1}^{N} x_i^{k_i} Big) Big(sum_{j=1}^{N}tilde{alpha_j}prod_{j=1}^{N} x_j^{tilde{k}_j} Big) \
&= sum_{l=1}^{2N}c_l prod_{i=1}^{l}x_i^{k_i}, \
&= (pq)(x)
end{align*}
with $c_l = sum_{m=1}^{l}alpha_mtilde{alpha}_{l-m}$.
- $p, q in mathcal{A} Rightarrow p+q in mathcal{A}$
Take the same $p, q in mathcal{A}$ written above, then
begin{align*}
p(x) + q(x) &= Big(sum_{i=1}^{N}alpha_iprod_{i=1}^{N} x_i^{k_i} Big) + Big(sum_{j=1}^{N}tilde{alpha_j}prod_{j=1}^{N} x_j^{tilde{k}_j} Big) \
&= sum_{l=1}^{N} (alpha_l + tilde{alpha}_l)prod_{l=1}^{N}x_l^{k_l} \
&= (p + q)(x)
end{align*}
real-analysis linear-algebra polynomials
add a comment |
Let $K$ be a compact non-empty subset of $mathbb{R}^N$. If $x in mathbb{R}^N$ and if $(k_1, k_2, dots, k_N), k_i in mathbb{Z}_+$, consider the function
$$x mapsto x_1^{k_1}x_2^{k_2}...x_N^{k_N}.$$
I want to show that the set $mathcal{A}$ of all linear combinations of such functions is a $mathbb{R}$-subalgebra of $C(K)$, but I'm struggling specifically with proving that the sum and the product of elements of $mathcal{A}$ belongs to $mathcal{A}$ cause I've very much confused with manipulating the indexes.
$textbf{My attempt:}$
Consider the set
$$mathcal{A} = Big{ sum_{i=1}^{N}alpha_iprod_{i=1}^{N} x_i^{k_i}: x_i, alpha_i in mathbb{R}, k_i in mathbb{Z}_+ Big}$$
1. $p, q in mathcal{A} Rightarrow pq in mathcal{A}$
Take $p, q in mathcal{A}$ such that $p = sum_{i=1}^{N}alpha_iprod_{i=1}^{N} x_i^{k_i}$ and $q = sum_{j=1}^{N}tilde{alpha}_jprod_{j=1}^{N} x_j^{tilde{k}_j}$, then it follows:
begin{align*}
p(x)q(x) &= Big(sum_{i=1}^{N}alpha_iprod_{i=1}^{N} x_i^{k_i} Big) Big(sum_{j=1}^{N}tilde{alpha_j}prod_{j=1}^{N} x_j^{tilde{k}_j} Big) \
&= sum_{l=1}^{2N}c_l prod_{i=1}^{l}x_i^{k_i}, \
&= (pq)(x)
end{align*}
with $c_l = sum_{m=1}^{l}alpha_mtilde{alpha}_{l-m}$.
- $p, q in mathcal{A} Rightarrow p+q in mathcal{A}$
Take the same $p, q in mathcal{A}$ written above, then
begin{align*}
p(x) + q(x) &= Big(sum_{i=1}^{N}alpha_iprod_{i=1}^{N} x_i^{k_i} Big) + Big(sum_{j=1}^{N}tilde{alpha_j}prod_{j=1}^{N} x_j^{tilde{k}_j} Big) \
&= sum_{l=1}^{N} (alpha_l + tilde{alpha}_l)prod_{l=1}^{N}x_l^{k_l} \
&= (p + q)(x)
end{align*}
real-analysis linear-algebra polynomials
Let $K$ be a compact non-empty subset of $mathbb{R}^N$. If $x in mathbb{R}^N$ and if $(k_1, k_2, dots, k_N), k_i in mathbb{Z}_+$, consider the function
$$x mapsto x_1^{k_1}x_2^{k_2}...x_N^{k_N}.$$
I want to show that the set $mathcal{A}$ of all linear combinations of such functions is a $mathbb{R}$-subalgebra of $C(K)$, but I'm struggling specifically with proving that the sum and the product of elements of $mathcal{A}$ belongs to $mathcal{A}$ cause I've very much confused with manipulating the indexes.
$textbf{My attempt:}$
Consider the set
$$mathcal{A} = Big{ sum_{i=1}^{N}alpha_iprod_{i=1}^{N} x_i^{k_i}: x_i, alpha_i in mathbb{R}, k_i in mathbb{Z}_+ Big}$$
1. $p, q in mathcal{A} Rightarrow pq in mathcal{A}$
Take $p, q in mathcal{A}$ such that $p = sum_{i=1}^{N}alpha_iprod_{i=1}^{N} x_i^{k_i}$ and $q = sum_{j=1}^{N}tilde{alpha}_jprod_{j=1}^{N} x_j^{tilde{k}_j}$, then it follows:
begin{align*}
p(x)q(x) &= Big(sum_{i=1}^{N}alpha_iprod_{i=1}^{N} x_i^{k_i} Big) Big(sum_{j=1}^{N}tilde{alpha_j}prod_{j=1}^{N} x_j^{tilde{k}_j} Big) \
&= sum_{l=1}^{2N}c_l prod_{i=1}^{l}x_i^{k_i}, \
&= (pq)(x)
end{align*}
with $c_l = sum_{m=1}^{l}alpha_mtilde{alpha}_{l-m}$.
- $p, q in mathcal{A} Rightarrow p+q in mathcal{A}$
Take the same $p, q in mathcal{A}$ written above, then
begin{align*}
p(x) + q(x) &= Big(sum_{i=1}^{N}alpha_iprod_{i=1}^{N} x_i^{k_i} Big) + Big(sum_{j=1}^{N}tilde{alpha_j}prod_{j=1}^{N} x_j^{tilde{k}_j} Big) \
&= sum_{l=1}^{N} (alpha_l + tilde{alpha}_l)prod_{l=1}^{N}x_l^{k_l} \
&= (p + q)(x)
end{align*}
real-analysis linear-algebra polynomials
real-analysis linear-algebra polynomials
edited Dec 5 '18 at 19:03
user71487
asked Nov 30 '18 at 19:47
user71487user71487
948
948
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3020552%2fsum-and-product-of-all-linear-combinations%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3020552%2fsum-and-product-of-all-linear-combinations%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown