Prove fourier coefficients of an odd discrete signal is $a_n = -a_{-n}$
I'm self studying signal and system. I've come across this property: fourier coefficients of an odd discrete signal is $a_n = -a_{-n}$, how can this be proved?
fourier-series
add a comment |
I'm self studying signal and system. I've come across this property: fourier coefficients of an odd discrete signal is $a_n = -a_{-n}$, how can this be proved?
fourier-series
add a comment |
I'm self studying signal and system. I've come across this property: fourier coefficients of an odd discrete signal is $a_n = -a_{-n}$, how can this be proved?
fourier-series
I'm self studying signal and system. I've come across this property: fourier coefficients of an odd discrete signal is $a_n = -a_{-n}$, how can this be proved?
fourier-series
fourier-series
asked Nov 30 '18 at 20:00
drerDdrerD
1519
1519
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
First the signal must be periodic. Second if the signal is $x[n]$ we have $$x[n]=sum_{k=0}^{N-1}a_ne^{j2pi kn}$$and $$a_k={1over N}sum_{n=0}^{N-1}x[n]e^{-i2pi kn}$$if $x[n] $ is odd we have$$a_{-k}{={1over N}sum_{n=0}^{N-1}x[n]e^{i2pi kn}\={1over N}sum_{n=0}^{N-1}-x[-n]e^{i2pi kn}\=-{1over N}sum_{n=1-N}^{0}x[n]e^{-i2pi kn}\=-{1over N}sum_{n=0}^{N-1}x[n]e^{-i2pi kn}\=-a_{k}}$$hence the proof is complete $blacksquare$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3020565%2fprove-fourier-coefficients-of-an-odd-discrete-signal-is-a-n-a-n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
First the signal must be periodic. Second if the signal is $x[n]$ we have $$x[n]=sum_{k=0}^{N-1}a_ne^{j2pi kn}$$and $$a_k={1over N}sum_{n=0}^{N-1}x[n]e^{-i2pi kn}$$if $x[n] $ is odd we have$$a_{-k}{={1over N}sum_{n=0}^{N-1}x[n]e^{i2pi kn}\={1over N}sum_{n=0}^{N-1}-x[-n]e^{i2pi kn}\=-{1over N}sum_{n=1-N}^{0}x[n]e^{-i2pi kn}\=-{1over N}sum_{n=0}^{N-1}x[n]e^{-i2pi kn}\=-a_{k}}$$hence the proof is complete $blacksquare$
add a comment |
First the signal must be periodic. Second if the signal is $x[n]$ we have $$x[n]=sum_{k=0}^{N-1}a_ne^{j2pi kn}$$and $$a_k={1over N}sum_{n=0}^{N-1}x[n]e^{-i2pi kn}$$if $x[n] $ is odd we have$$a_{-k}{={1over N}sum_{n=0}^{N-1}x[n]e^{i2pi kn}\={1over N}sum_{n=0}^{N-1}-x[-n]e^{i2pi kn}\=-{1over N}sum_{n=1-N}^{0}x[n]e^{-i2pi kn}\=-{1over N}sum_{n=0}^{N-1}x[n]e^{-i2pi kn}\=-a_{k}}$$hence the proof is complete $blacksquare$
add a comment |
First the signal must be periodic. Second if the signal is $x[n]$ we have $$x[n]=sum_{k=0}^{N-1}a_ne^{j2pi kn}$$and $$a_k={1over N}sum_{n=0}^{N-1}x[n]e^{-i2pi kn}$$if $x[n] $ is odd we have$$a_{-k}{={1over N}sum_{n=0}^{N-1}x[n]e^{i2pi kn}\={1over N}sum_{n=0}^{N-1}-x[-n]e^{i2pi kn}\=-{1over N}sum_{n=1-N}^{0}x[n]e^{-i2pi kn}\=-{1over N}sum_{n=0}^{N-1}x[n]e^{-i2pi kn}\=-a_{k}}$$hence the proof is complete $blacksquare$
First the signal must be periodic. Second if the signal is $x[n]$ we have $$x[n]=sum_{k=0}^{N-1}a_ne^{j2pi kn}$$and $$a_k={1over N}sum_{n=0}^{N-1}x[n]e^{-i2pi kn}$$if $x[n] $ is odd we have$$a_{-k}{={1over N}sum_{n=0}^{N-1}x[n]e^{i2pi kn}\={1over N}sum_{n=0}^{N-1}-x[-n]e^{i2pi kn}\=-{1over N}sum_{n=1-N}^{0}x[n]e^{-i2pi kn}\=-{1over N}sum_{n=0}^{N-1}x[n]e^{-i2pi kn}\=-a_{k}}$$hence the proof is complete $blacksquare$
answered Nov 30 '18 at 20:23
Mostafa AyazMostafa Ayaz
14.5k3937
14.5k3937
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3020565%2fprove-fourier-coefficients-of-an-odd-discrete-signal-is-a-n-a-n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown