Is there any formula to find the sum of a series like $ (n/16)^{3/4}+(n/16^2)^{3/4}+(n/16^3)^{3/4} cdots $
I am wondering if there is any way to find the sum of series like this either finite(upto some n and we do not know the value of n) or infinite.
$$left(frac{n}{16}right)^{3/4}+left(frac{n}{16^2}right)^{3/4}+left(frac{n}{16^3}right)^{3/4}+ldots$$
sequences-and-series
add a comment |
I am wondering if there is any way to find the sum of series like this either finite(upto some n and we do not know the value of n) or infinite.
$$left(frac{n}{16}right)^{3/4}+left(frac{n}{16^2}right)^{3/4}+left(frac{n}{16^3}right)^{3/4}+ldots$$
sequences-and-series
2
You want to calculate $$S = n^{frac{3}{4}}sum_{i=1}^inftyfrac{1}{16^{frac{3i}{4}}}text{?}$$ Please take a look at the geometric series...
– denklo
Oct 16 '18 at 6:45
Welcome to MSE. For some basic information about writing mathematics at this site see, e.g., basic help on mathjax notation, mathjax tutorial and quick reference, main meta site math tutorial and equation editing how-to.
– José Carlos Santos
Oct 16 '18 at 6:50
add a comment |
I am wondering if there is any way to find the sum of series like this either finite(upto some n and we do not know the value of n) or infinite.
$$left(frac{n}{16}right)^{3/4}+left(frac{n}{16^2}right)^{3/4}+left(frac{n}{16^3}right)^{3/4}+ldots$$
sequences-and-series
I am wondering if there is any way to find the sum of series like this either finite(upto some n and we do not know the value of n) or infinite.
$$left(frac{n}{16}right)^{3/4}+left(frac{n}{16^2}right)^{3/4}+left(frac{n}{16^3}right)^{3/4}+ldots$$
sequences-and-series
sequences-and-series
edited Oct 24 '18 at 21:57
rtybase
10.5k21533
10.5k21533
asked Oct 16 '18 at 6:40
SreeSree
111
111
2
You want to calculate $$S = n^{frac{3}{4}}sum_{i=1}^inftyfrac{1}{16^{frac{3i}{4}}}text{?}$$ Please take a look at the geometric series...
– denklo
Oct 16 '18 at 6:45
Welcome to MSE. For some basic information about writing mathematics at this site see, e.g., basic help on mathjax notation, mathjax tutorial and quick reference, main meta site math tutorial and equation editing how-to.
– José Carlos Santos
Oct 16 '18 at 6:50
add a comment |
2
You want to calculate $$S = n^{frac{3}{4}}sum_{i=1}^inftyfrac{1}{16^{frac{3i}{4}}}text{?}$$ Please take a look at the geometric series...
– denklo
Oct 16 '18 at 6:45
Welcome to MSE. For some basic information about writing mathematics at this site see, e.g., basic help on mathjax notation, mathjax tutorial and quick reference, main meta site math tutorial and equation editing how-to.
– José Carlos Santos
Oct 16 '18 at 6:50
2
2
You want to calculate $$S = n^{frac{3}{4}}sum_{i=1}^inftyfrac{1}{16^{frac{3i}{4}}}text{?}$$ Please take a look at the geometric series...
– denklo
Oct 16 '18 at 6:45
You want to calculate $$S = n^{frac{3}{4}}sum_{i=1}^inftyfrac{1}{16^{frac{3i}{4}}}text{?}$$ Please take a look at the geometric series...
– denklo
Oct 16 '18 at 6:45
Welcome to MSE. For some basic information about writing mathematics at this site see, e.g., basic help on mathjax notation, mathjax tutorial and quick reference, main meta site math tutorial and equation editing how-to.
– José Carlos Santos
Oct 16 '18 at 6:50
Welcome to MSE. For some basic information about writing mathematics at this site see, e.g., basic help on mathjax notation, mathjax tutorial and quick reference, main meta site math tutorial and equation editing how-to.
– José Carlos Santos
Oct 16 '18 at 6:50
add a comment |
2 Answers
2
active
oldest
votes
$$left(frac{n}{16}right)^{3/4}+left(frac{n}{16^2}right)^{3/4}+left(frac{n}{16^3}right)^{3/4}+ldots{=n^{3over 4}sum_{k=1}^{infty}{1over 16^{3kover 4}}\=n^{3over 4}sum_{k=1}^{infty}{1over 2^{3k}}\=n^{3over 4}sum_{k=1}^{infty}{1over 8^{k}}=\=n^{3over 4}{{1over 8}over 1-{1over 8}}\={1over 7}n^{3over 4}}$$
add a comment |
Rewrite it in summation notation to see that$$S=n^{3/4}sumlimits_{kgeq1}16^{-3k/4}$$Now use the formula for the infinite geometric sequence for $|r|<1$
$$sumlimits_{ngeq1}r^n=frac r{1-r}$$This can be proven by expanding out the infinite sum and noting how$$begin{align*}A & =r+r^2+r^3+cdots\ Ar & =phantom{r+}spacespace r^2+r^3+cdotsend{align*}$$Now subtract and isolate $A$. In this case, $r=16^{-3/4}$ and simplifying, the answer turns out to be$$Scolor{blue}{=frac {n^{3/4}}{7}}$$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2957543%2fis-there-any-formula-to-find-the-sum-of-a-series-like-n-163-4n-1623%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$$left(frac{n}{16}right)^{3/4}+left(frac{n}{16^2}right)^{3/4}+left(frac{n}{16^3}right)^{3/4}+ldots{=n^{3over 4}sum_{k=1}^{infty}{1over 16^{3kover 4}}\=n^{3over 4}sum_{k=1}^{infty}{1over 2^{3k}}\=n^{3over 4}sum_{k=1}^{infty}{1over 8^{k}}=\=n^{3over 4}{{1over 8}over 1-{1over 8}}\={1over 7}n^{3over 4}}$$
add a comment |
$$left(frac{n}{16}right)^{3/4}+left(frac{n}{16^2}right)^{3/4}+left(frac{n}{16^3}right)^{3/4}+ldots{=n^{3over 4}sum_{k=1}^{infty}{1over 16^{3kover 4}}\=n^{3over 4}sum_{k=1}^{infty}{1over 2^{3k}}\=n^{3over 4}sum_{k=1}^{infty}{1over 8^{k}}=\=n^{3over 4}{{1over 8}over 1-{1over 8}}\={1over 7}n^{3over 4}}$$
add a comment |
$$left(frac{n}{16}right)^{3/4}+left(frac{n}{16^2}right)^{3/4}+left(frac{n}{16^3}right)^{3/4}+ldots{=n^{3over 4}sum_{k=1}^{infty}{1over 16^{3kover 4}}\=n^{3over 4}sum_{k=1}^{infty}{1over 2^{3k}}\=n^{3over 4}sum_{k=1}^{infty}{1over 8^{k}}=\=n^{3over 4}{{1over 8}over 1-{1over 8}}\={1over 7}n^{3over 4}}$$
$$left(frac{n}{16}right)^{3/4}+left(frac{n}{16^2}right)^{3/4}+left(frac{n}{16^3}right)^{3/4}+ldots{=n^{3over 4}sum_{k=1}^{infty}{1over 16^{3kover 4}}\=n^{3over 4}sum_{k=1}^{infty}{1over 2^{3k}}\=n^{3over 4}sum_{k=1}^{infty}{1over 8^{k}}=\=n^{3over 4}{{1over 8}over 1-{1over 8}}\={1over 7}n^{3over 4}}$$
answered Nov 30 '18 at 19:47
Mostafa AyazMostafa Ayaz
14.5k3937
14.5k3937
add a comment |
add a comment |
Rewrite it in summation notation to see that$$S=n^{3/4}sumlimits_{kgeq1}16^{-3k/4}$$Now use the formula for the infinite geometric sequence for $|r|<1$
$$sumlimits_{ngeq1}r^n=frac r{1-r}$$This can be proven by expanding out the infinite sum and noting how$$begin{align*}A & =r+r^2+r^3+cdots\ Ar & =phantom{r+}spacespace r^2+r^3+cdotsend{align*}$$Now subtract and isolate $A$. In this case, $r=16^{-3/4}$ and simplifying, the answer turns out to be$$Scolor{blue}{=frac {n^{3/4}}{7}}$$
add a comment |
Rewrite it in summation notation to see that$$S=n^{3/4}sumlimits_{kgeq1}16^{-3k/4}$$Now use the formula for the infinite geometric sequence for $|r|<1$
$$sumlimits_{ngeq1}r^n=frac r{1-r}$$This can be proven by expanding out the infinite sum and noting how$$begin{align*}A & =r+r^2+r^3+cdots\ Ar & =phantom{r+}spacespace r^2+r^3+cdotsend{align*}$$Now subtract and isolate $A$. In this case, $r=16^{-3/4}$ and simplifying, the answer turns out to be$$Scolor{blue}{=frac {n^{3/4}}{7}}$$
add a comment |
Rewrite it in summation notation to see that$$S=n^{3/4}sumlimits_{kgeq1}16^{-3k/4}$$Now use the formula for the infinite geometric sequence for $|r|<1$
$$sumlimits_{ngeq1}r^n=frac r{1-r}$$This can be proven by expanding out the infinite sum and noting how$$begin{align*}A & =r+r^2+r^3+cdots\ Ar & =phantom{r+}spacespace r^2+r^3+cdotsend{align*}$$Now subtract and isolate $A$. In this case, $r=16^{-3/4}$ and simplifying, the answer turns out to be$$Scolor{blue}{=frac {n^{3/4}}{7}}$$
Rewrite it in summation notation to see that$$S=n^{3/4}sumlimits_{kgeq1}16^{-3k/4}$$Now use the formula for the infinite geometric sequence for $|r|<1$
$$sumlimits_{ngeq1}r^n=frac r{1-r}$$This can be proven by expanding out the infinite sum and noting how$$begin{align*}A & =r+r^2+r^3+cdots\ Ar & =phantom{r+}spacespace r^2+r^3+cdotsend{align*}$$Now subtract and isolate $A$. In this case, $r=16^{-3/4}$ and simplifying, the answer turns out to be$$Scolor{blue}{=frac {n^{3/4}}{7}}$$
answered Nov 30 '18 at 19:56
Frank W.Frank W.
3,1891321
3,1891321
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2957543%2fis-there-any-formula-to-find-the-sum-of-a-series-like-n-163-4n-1623%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
You want to calculate $$S = n^{frac{3}{4}}sum_{i=1}^inftyfrac{1}{16^{frac{3i}{4}}}text{?}$$ Please take a look at the geometric series...
– denklo
Oct 16 '18 at 6:45
Welcome to MSE. For some basic information about writing mathematics at this site see, e.g., basic help on mathjax notation, mathjax tutorial and quick reference, main meta site math tutorial and equation editing how-to.
– José Carlos Santos
Oct 16 '18 at 6:50