Is $h:xto expleft[-frac{x^2}{2}right]left(expleft[frac{x^4}{24n}right]-1right)$ increasing?












3












$begingroup$


I struggling to show this function ins increasing on $mathbb{R}^+$



$$h:xto expleft[-dfrac{x^2}{2}right]left(expleft[dfrac{x^4}{24n}right]-1right) qquad nin mathbb{N}^*$$



With the derivative



I've found



$$h'(x)=xe^{-frac{x^2}{2}}left[left(dfrac{x^2}{6n}-1right)e^{frac{x^4}{24n}}+1right]$$



$h'(x)ge 0iff left(dfrac{x^2}{6n}-1right)e^{frac{x^4}{24n}}+1ge 0$



and now I'm blocked...










share|cite|improve this question











$endgroup$












  • $begingroup$
    What is the parameter $n$?
    $endgroup$
    – gimusi
    Dec 2 '18 at 12:37










  • $begingroup$
    $$nin mathbb{N}^*$$
    $endgroup$
    – Stu
    Dec 2 '18 at 12:44
















3












$begingroup$


I struggling to show this function ins increasing on $mathbb{R}^+$



$$h:xto expleft[-dfrac{x^2}{2}right]left(expleft[dfrac{x^4}{24n}right]-1right) qquad nin mathbb{N}^*$$



With the derivative



I've found



$$h'(x)=xe^{-frac{x^2}{2}}left[left(dfrac{x^2}{6n}-1right)e^{frac{x^4}{24n}}+1right]$$



$h'(x)ge 0iff left(dfrac{x^2}{6n}-1right)e^{frac{x^4}{24n}}+1ge 0$



and now I'm blocked...










share|cite|improve this question











$endgroup$












  • $begingroup$
    What is the parameter $n$?
    $endgroup$
    – gimusi
    Dec 2 '18 at 12:37










  • $begingroup$
    $$nin mathbb{N}^*$$
    $endgroup$
    – Stu
    Dec 2 '18 at 12:44














3












3








3





$begingroup$


I struggling to show this function ins increasing on $mathbb{R}^+$



$$h:xto expleft[-dfrac{x^2}{2}right]left(expleft[dfrac{x^4}{24n}right]-1right) qquad nin mathbb{N}^*$$



With the derivative



I've found



$$h'(x)=xe^{-frac{x^2}{2}}left[left(dfrac{x^2}{6n}-1right)e^{frac{x^4}{24n}}+1right]$$



$h'(x)ge 0iff left(dfrac{x^2}{6n}-1right)e^{frac{x^4}{24n}}+1ge 0$



and now I'm blocked...










share|cite|improve this question











$endgroup$




I struggling to show this function ins increasing on $mathbb{R}^+$



$$h:xto expleft[-dfrac{x^2}{2}right]left(expleft[dfrac{x^4}{24n}right]-1right) qquad nin mathbb{N}^*$$



With the derivative



I've found



$$h'(x)=xe^{-frac{x^2}{2}}left[left(dfrac{x^2}{6n}-1right)e^{frac{x^4}{24n}}+1right]$$



$h'(x)ge 0iff left(dfrac{x^2}{6n}-1right)e^{frac{x^4}{24n}}+1ge 0$



and now I'm blocked...







real-analysis






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 2 '18 at 12:43







Stu

















asked Dec 2 '18 at 12:32









StuStu

1,1741413




1,1741413












  • $begingroup$
    What is the parameter $n$?
    $endgroup$
    – gimusi
    Dec 2 '18 at 12:37










  • $begingroup$
    $$nin mathbb{N}^*$$
    $endgroup$
    – Stu
    Dec 2 '18 at 12:44


















  • $begingroup$
    What is the parameter $n$?
    $endgroup$
    – gimusi
    Dec 2 '18 at 12:37










  • $begingroup$
    $$nin mathbb{N}^*$$
    $endgroup$
    – Stu
    Dec 2 '18 at 12:44
















$begingroup$
What is the parameter $n$?
$endgroup$
– gimusi
Dec 2 '18 at 12:37




$begingroup$
What is the parameter $n$?
$endgroup$
– gimusi
Dec 2 '18 at 12:37












$begingroup$
$$nin mathbb{N}^*$$
$endgroup$
– Stu
Dec 2 '18 at 12:44




$begingroup$
$$nin mathbb{N}^*$$
$endgroup$
– Stu
Dec 2 '18 at 12:44










1 Answer
1






active

oldest

votes


















1












$begingroup$

We have that



$$h'(x)=-xe^{-frac{x^2}{2}}left(e^{frac{x^4}{24n}}-1right)+frac{x^3}{6n}e^{-frac{x^2}{2}}e^{frac{x^4}{24n}}
=-xe^{-frac{x^2}{2}}left(left(1-frac{x^2}{6n}right)e^{frac{x^4}{24n}}-1right)$$



then we need to prove that



$$left(frac{x^2}{6n}-1right)e^{frac{x^4}{24n}}+1 ge 0 $$



and for $frac{x^2}{6n}-1<0 iff x<sqrt{6n}$ it is equivalent to



$$left(1-frac{x^2}{6n}right)e^{frac{x^4}{24n}}-1le 0 $$



and by $y=frac{x^2}{6n}in (0,1)$



$$(1-y)e^{frac32ny^2}-1le 0 $$



which doesn't hold for $n=2$ indeed



$$f(y)=(1-y)e^{3y^2}-1 implies f'(y)=e^{3y^2}(-6y^2+6y-1)=0 implies y_{1,2}=frac12pmfrac{sqrt 3}6$$



and $f(y_1)>0$.






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3022579%2fis-hx-to-exp-left-fracx22-right-left-exp-left-fracx424n-right%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    We have that



    $$h'(x)=-xe^{-frac{x^2}{2}}left(e^{frac{x^4}{24n}}-1right)+frac{x^3}{6n}e^{-frac{x^2}{2}}e^{frac{x^4}{24n}}
    =-xe^{-frac{x^2}{2}}left(left(1-frac{x^2}{6n}right)e^{frac{x^4}{24n}}-1right)$$



    then we need to prove that



    $$left(frac{x^2}{6n}-1right)e^{frac{x^4}{24n}}+1 ge 0 $$



    and for $frac{x^2}{6n}-1<0 iff x<sqrt{6n}$ it is equivalent to



    $$left(1-frac{x^2}{6n}right)e^{frac{x^4}{24n}}-1le 0 $$



    and by $y=frac{x^2}{6n}in (0,1)$



    $$(1-y)e^{frac32ny^2}-1le 0 $$



    which doesn't hold for $n=2$ indeed



    $$f(y)=(1-y)e^{3y^2}-1 implies f'(y)=e^{3y^2}(-6y^2+6y-1)=0 implies y_{1,2}=frac12pmfrac{sqrt 3}6$$



    and $f(y_1)>0$.






    share|cite|improve this answer











    $endgroup$


















      1












      $begingroup$

      We have that



      $$h'(x)=-xe^{-frac{x^2}{2}}left(e^{frac{x^4}{24n}}-1right)+frac{x^3}{6n}e^{-frac{x^2}{2}}e^{frac{x^4}{24n}}
      =-xe^{-frac{x^2}{2}}left(left(1-frac{x^2}{6n}right)e^{frac{x^4}{24n}}-1right)$$



      then we need to prove that



      $$left(frac{x^2}{6n}-1right)e^{frac{x^4}{24n}}+1 ge 0 $$



      and for $frac{x^2}{6n}-1<0 iff x<sqrt{6n}$ it is equivalent to



      $$left(1-frac{x^2}{6n}right)e^{frac{x^4}{24n}}-1le 0 $$



      and by $y=frac{x^2}{6n}in (0,1)$



      $$(1-y)e^{frac32ny^2}-1le 0 $$



      which doesn't hold for $n=2$ indeed



      $$f(y)=(1-y)e^{3y^2}-1 implies f'(y)=e^{3y^2}(-6y^2+6y-1)=0 implies y_{1,2}=frac12pmfrac{sqrt 3}6$$



      and $f(y_1)>0$.






      share|cite|improve this answer











      $endgroup$
















        1












        1








        1





        $begingroup$

        We have that



        $$h'(x)=-xe^{-frac{x^2}{2}}left(e^{frac{x^4}{24n}}-1right)+frac{x^3}{6n}e^{-frac{x^2}{2}}e^{frac{x^4}{24n}}
        =-xe^{-frac{x^2}{2}}left(left(1-frac{x^2}{6n}right)e^{frac{x^4}{24n}}-1right)$$



        then we need to prove that



        $$left(frac{x^2}{6n}-1right)e^{frac{x^4}{24n}}+1 ge 0 $$



        and for $frac{x^2}{6n}-1<0 iff x<sqrt{6n}$ it is equivalent to



        $$left(1-frac{x^2}{6n}right)e^{frac{x^4}{24n}}-1le 0 $$



        and by $y=frac{x^2}{6n}in (0,1)$



        $$(1-y)e^{frac32ny^2}-1le 0 $$



        which doesn't hold for $n=2$ indeed



        $$f(y)=(1-y)e^{3y^2}-1 implies f'(y)=e^{3y^2}(-6y^2+6y-1)=0 implies y_{1,2}=frac12pmfrac{sqrt 3}6$$



        and $f(y_1)>0$.






        share|cite|improve this answer











        $endgroup$



        We have that



        $$h'(x)=-xe^{-frac{x^2}{2}}left(e^{frac{x^4}{24n}}-1right)+frac{x^3}{6n}e^{-frac{x^2}{2}}e^{frac{x^4}{24n}}
        =-xe^{-frac{x^2}{2}}left(left(1-frac{x^2}{6n}right)e^{frac{x^4}{24n}}-1right)$$



        then we need to prove that



        $$left(frac{x^2}{6n}-1right)e^{frac{x^4}{24n}}+1 ge 0 $$



        and for $frac{x^2}{6n}-1<0 iff x<sqrt{6n}$ it is equivalent to



        $$left(1-frac{x^2}{6n}right)e^{frac{x^4}{24n}}-1le 0 $$



        and by $y=frac{x^2}{6n}in (0,1)$



        $$(1-y)e^{frac32ny^2}-1le 0 $$



        which doesn't hold for $n=2$ indeed



        $$f(y)=(1-y)e^{3y^2}-1 implies f'(y)=e^{3y^2}(-6y^2+6y-1)=0 implies y_{1,2}=frac12pmfrac{sqrt 3}6$$



        and $f(y_1)>0$.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Dec 2 '18 at 13:26

























        answered Dec 2 '18 at 13:16









        gimusigimusi

        1




        1






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3022579%2fis-hx-to-exp-left-fracx22-right-left-exp-left-fracx424n-right%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Probability when a professor distributes a quiz and homework assignment to a class of n students.

            Aardman Animations

            Are they similar matrix