Integral equation with a square root seems to go on
$begingroup$
$$ int_0^1 sqrt{1+y^2} (a_0 + a_1y) dy
$$
I have tried to solve this equation by using integration by parts. I am using the square root as the part which I am differentiating. By using this, the method seems like it is ongoing and does not have a final answer. Any guidance will be much appreciated
I am still trying to figure out the formatting so please forgive me
calculus integration
$endgroup$
add a comment |
$begingroup$
$$ int_0^1 sqrt{1+y^2} (a_0 + a_1y) dy
$$
I have tried to solve this equation by using integration by parts. I am using the square root as the part which I am differentiating. By using this, the method seems like it is ongoing and does not have a final answer. Any guidance will be much appreciated
I am still trying to figure out the formatting so please forgive me
calculus integration
$endgroup$
$begingroup$
MathJax hint: To group things under a square root, enclose them in braces, so sqrt{1+2} gives $sqrt {1+2}$. It works everywhere, like superscripts and subscripts. Is the last term just $a_1y$ or is $a_1$ a function of $y$?
$endgroup$
– Ross Millikan
Dec 1 '18 at 16:33
$begingroup$
it is a1y @RossMillikan. So there should be no brackets around y
$endgroup$
– p s
Dec 1 '18 at 16:38
1
$begingroup$
Break it into two integrals. For the first, try a trig substitution. For the second, do a change of variables.
$endgroup$
– Cameron Williams
Dec 1 '18 at 16:40
$begingroup$
@CameronWilliams. For the second integral, is that the same as integration by substitution.
$endgroup$
– p s
Dec 1 '18 at 16:48
add a comment |
$begingroup$
$$ int_0^1 sqrt{1+y^2} (a_0 + a_1y) dy
$$
I have tried to solve this equation by using integration by parts. I am using the square root as the part which I am differentiating. By using this, the method seems like it is ongoing and does not have a final answer. Any guidance will be much appreciated
I am still trying to figure out the formatting so please forgive me
calculus integration
$endgroup$
$$ int_0^1 sqrt{1+y^2} (a_0 + a_1y) dy
$$
I have tried to solve this equation by using integration by parts. I am using the square root as the part which I am differentiating. By using this, the method seems like it is ongoing and does not have a final answer. Any guidance will be much appreciated
I am still trying to figure out the formatting so please forgive me
calculus integration
calculus integration
edited Dec 1 '18 at 16:38
p s
asked Dec 1 '18 at 16:27
p sp s
357
357
$begingroup$
MathJax hint: To group things under a square root, enclose them in braces, so sqrt{1+2} gives $sqrt {1+2}$. It works everywhere, like superscripts and subscripts. Is the last term just $a_1y$ or is $a_1$ a function of $y$?
$endgroup$
– Ross Millikan
Dec 1 '18 at 16:33
$begingroup$
it is a1y @RossMillikan. So there should be no brackets around y
$endgroup$
– p s
Dec 1 '18 at 16:38
1
$begingroup$
Break it into two integrals. For the first, try a trig substitution. For the second, do a change of variables.
$endgroup$
– Cameron Williams
Dec 1 '18 at 16:40
$begingroup$
@CameronWilliams. For the second integral, is that the same as integration by substitution.
$endgroup$
– p s
Dec 1 '18 at 16:48
add a comment |
$begingroup$
MathJax hint: To group things under a square root, enclose them in braces, so sqrt{1+2} gives $sqrt {1+2}$. It works everywhere, like superscripts and subscripts. Is the last term just $a_1y$ or is $a_1$ a function of $y$?
$endgroup$
– Ross Millikan
Dec 1 '18 at 16:33
$begingroup$
it is a1y @RossMillikan. So there should be no brackets around y
$endgroup$
– p s
Dec 1 '18 at 16:38
1
$begingroup$
Break it into two integrals. For the first, try a trig substitution. For the second, do a change of variables.
$endgroup$
– Cameron Williams
Dec 1 '18 at 16:40
$begingroup$
@CameronWilliams. For the second integral, is that the same as integration by substitution.
$endgroup$
– p s
Dec 1 '18 at 16:48
$begingroup$
MathJax hint: To group things under a square root, enclose them in braces, so sqrt{1+2} gives $sqrt {1+2}$. It works everywhere, like superscripts and subscripts. Is the last term just $a_1y$ or is $a_1$ a function of $y$?
$endgroup$
– Ross Millikan
Dec 1 '18 at 16:33
$begingroup$
MathJax hint: To group things under a square root, enclose them in braces, so sqrt{1+2} gives $sqrt {1+2}$. It works everywhere, like superscripts and subscripts. Is the last term just $a_1y$ or is $a_1$ a function of $y$?
$endgroup$
– Ross Millikan
Dec 1 '18 at 16:33
$begingroup$
it is a1y @RossMillikan. So there should be no brackets around y
$endgroup$
– p s
Dec 1 '18 at 16:38
$begingroup$
it is a1y @RossMillikan. So there should be no brackets around y
$endgroup$
– p s
Dec 1 '18 at 16:38
1
1
$begingroup$
Break it into two integrals. For the first, try a trig substitution. For the second, do a change of variables.
$endgroup$
– Cameron Williams
Dec 1 '18 at 16:40
$begingroup$
Break it into two integrals. For the first, try a trig substitution. For the second, do a change of variables.
$endgroup$
– Cameron Williams
Dec 1 '18 at 16:40
$begingroup$
@CameronWilliams. For the second integral, is that the same as integration by substitution.
$endgroup$
– p s
Dec 1 '18 at 16:48
$begingroup$
@CameronWilliams. For the second integral, is that the same as integration by substitution.
$endgroup$
– p s
Dec 1 '18 at 16:48
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
$$I=int_0^1(a_0+a_1x)sqrt{1+x^2} mathrm dx$$
$$I=a_0int_0^1sqrt{1+x^2} mathrm dx+a_1int_0^1xsqrt{1+x^2} mathrm dx$$
$$I=a_0I_0+a_1I_1$$
$$I_0=int_0^1sqrt{1+x^2} mathrm dx$$
For this we will use a trigonometric substitution:
$$x=tan uRightarrow mathrm dx=sec^2u mathrm du$$
The change of bounds:
$$int_0^1mapsto int_0^{pi/4}$$
Hence
$$I_0=int_0^{pi/4}sqrt{1+tan^2u}sec^2u mathrm du$$
$$I_0=int_0^{pi/4}sqrt{sec^2u}sec^2u mathrm du$$
$$I_0=int_0^{pi/4}sec usec^2u mathrm du=int_0^{pi/4}sec^3u mathrm du$$
We then integrate by parts:
$$mathrm dV=sec^2u mathrm duRightarrow V=tan u$$
$$U=sec uRightarrow mathrm dU=sec utan u mathrm du$$
Which gives
$$I_0=sec utan ubig|_0^{pi/4}-int_0^{pi/4}tan usec utan u mathrm du$$
$$I_0=sqrt{2}-int_0^{pi/4}sec utan^2u mathrm du$$
$$I_0=sqrt{2}-int_0^{pi/4}sec u(sec^2u-1) mathrm du$$
$$I_0=sqrt{2}-int_0^{pi/4}sec^3u mathrm du+int_0^{pi/4}sec u mathrm du$$
$$I_0=sqrt{2}-I_0+int_0^{pi/4}sec u mathrm du$$
$$2I_0=sqrt{2}+int_0^{pi/4}sec u mathrm du$$
$$2I_0=sqrt{2}+log(sec u+tan u)big|_0^{pi/4}$$
$$2I_0=sqrt{2}+log(1+sqrt2)$$
$$I_0=frac{sqrt{2}+log(1+sqrt2)}2$$
$$I_1=int_0^1xsqrt{1+x^2} mathrm dx$$
Substitution:
$$w^2=x^2+1Rightarrow wmathrm dw=xmathrm dx$$
$$int_0^1mapsto int_1^{sqrt2}$$
This gives
$$I_1=int_1^{sqrt2}sqrt{w^2}w mathrm dw$$
$$I_1=int_1^{sqrt2}w^2 mathrm dw$$
$$I_1=frac{w^3}3bigg|_1^{sqrt2}$$
$$I_1=frac{2^{3/2}-1}3$$
Finally:
$$I=frac{a_0}2bigg(sqrt2+log(1+sqrt2)bigg)+frac{a_1}3big(2^{3/2}-1big)$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3021529%2fintegral-equation-with-a-square-root-seems-to-go-on%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$I=int_0^1(a_0+a_1x)sqrt{1+x^2} mathrm dx$$
$$I=a_0int_0^1sqrt{1+x^2} mathrm dx+a_1int_0^1xsqrt{1+x^2} mathrm dx$$
$$I=a_0I_0+a_1I_1$$
$$I_0=int_0^1sqrt{1+x^2} mathrm dx$$
For this we will use a trigonometric substitution:
$$x=tan uRightarrow mathrm dx=sec^2u mathrm du$$
The change of bounds:
$$int_0^1mapsto int_0^{pi/4}$$
Hence
$$I_0=int_0^{pi/4}sqrt{1+tan^2u}sec^2u mathrm du$$
$$I_0=int_0^{pi/4}sqrt{sec^2u}sec^2u mathrm du$$
$$I_0=int_0^{pi/4}sec usec^2u mathrm du=int_0^{pi/4}sec^3u mathrm du$$
We then integrate by parts:
$$mathrm dV=sec^2u mathrm duRightarrow V=tan u$$
$$U=sec uRightarrow mathrm dU=sec utan u mathrm du$$
Which gives
$$I_0=sec utan ubig|_0^{pi/4}-int_0^{pi/4}tan usec utan u mathrm du$$
$$I_0=sqrt{2}-int_0^{pi/4}sec utan^2u mathrm du$$
$$I_0=sqrt{2}-int_0^{pi/4}sec u(sec^2u-1) mathrm du$$
$$I_0=sqrt{2}-int_0^{pi/4}sec^3u mathrm du+int_0^{pi/4}sec u mathrm du$$
$$I_0=sqrt{2}-I_0+int_0^{pi/4}sec u mathrm du$$
$$2I_0=sqrt{2}+int_0^{pi/4}sec u mathrm du$$
$$2I_0=sqrt{2}+log(sec u+tan u)big|_0^{pi/4}$$
$$2I_0=sqrt{2}+log(1+sqrt2)$$
$$I_0=frac{sqrt{2}+log(1+sqrt2)}2$$
$$I_1=int_0^1xsqrt{1+x^2} mathrm dx$$
Substitution:
$$w^2=x^2+1Rightarrow wmathrm dw=xmathrm dx$$
$$int_0^1mapsto int_1^{sqrt2}$$
This gives
$$I_1=int_1^{sqrt2}sqrt{w^2}w mathrm dw$$
$$I_1=int_1^{sqrt2}w^2 mathrm dw$$
$$I_1=frac{w^3}3bigg|_1^{sqrt2}$$
$$I_1=frac{2^{3/2}-1}3$$
Finally:
$$I=frac{a_0}2bigg(sqrt2+log(1+sqrt2)bigg)+frac{a_1}3big(2^{3/2}-1big)$$
$endgroup$
add a comment |
$begingroup$
$$I=int_0^1(a_0+a_1x)sqrt{1+x^2} mathrm dx$$
$$I=a_0int_0^1sqrt{1+x^2} mathrm dx+a_1int_0^1xsqrt{1+x^2} mathrm dx$$
$$I=a_0I_0+a_1I_1$$
$$I_0=int_0^1sqrt{1+x^2} mathrm dx$$
For this we will use a trigonometric substitution:
$$x=tan uRightarrow mathrm dx=sec^2u mathrm du$$
The change of bounds:
$$int_0^1mapsto int_0^{pi/4}$$
Hence
$$I_0=int_0^{pi/4}sqrt{1+tan^2u}sec^2u mathrm du$$
$$I_0=int_0^{pi/4}sqrt{sec^2u}sec^2u mathrm du$$
$$I_0=int_0^{pi/4}sec usec^2u mathrm du=int_0^{pi/4}sec^3u mathrm du$$
We then integrate by parts:
$$mathrm dV=sec^2u mathrm duRightarrow V=tan u$$
$$U=sec uRightarrow mathrm dU=sec utan u mathrm du$$
Which gives
$$I_0=sec utan ubig|_0^{pi/4}-int_0^{pi/4}tan usec utan u mathrm du$$
$$I_0=sqrt{2}-int_0^{pi/4}sec utan^2u mathrm du$$
$$I_0=sqrt{2}-int_0^{pi/4}sec u(sec^2u-1) mathrm du$$
$$I_0=sqrt{2}-int_0^{pi/4}sec^3u mathrm du+int_0^{pi/4}sec u mathrm du$$
$$I_0=sqrt{2}-I_0+int_0^{pi/4}sec u mathrm du$$
$$2I_0=sqrt{2}+int_0^{pi/4}sec u mathrm du$$
$$2I_0=sqrt{2}+log(sec u+tan u)big|_0^{pi/4}$$
$$2I_0=sqrt{2}+log(1+sqrt2)$$
$$I_0=frac{sqrt{2}+log(1+sqrt2)}2$$
$$I_1=int_0^1xsqrt{1+x^2} mathrm dx$$
Substitution:
$$w^2=x^2+1Rightarrow wmathrm dw=xmathrm dx$$
$$int_0^1mapsto int_1^{sqrt2}$$
This gives
$$I_1=int_1^{sqrt2}sqrt{w^2}w mathrm dw$$
$$I_1=int_1^{sqrt2}w^2 mathrm dw$$
$$I_1=frac{w^3}3bigg|_1^{sqrt2}$$
$$I_1=frac{2^{3/2}-1}3$$
Finally:
$$I=frac{a_0}2bigg(sqrt2+log(1+sqrt2)bigg)+frac{a_1}3big(2^{3/2}-1big)$$
$endgroup$
add a comment |
$begingroup$
$$I=int_0^1(a_0+a_1x)sqrt{1+x^2} mathrm dx$$
$$I=a_0int_0^1sqrt{1+x^2} mathrm dx+a_1int_0^1xsqrt{1+x^2} mathrm dx$$
$$I=a_0I_0+a_1I_1$$
$$I_0=int_0^1sqrt{1+x^2} mathrm dx$$
For this we will use a trigonometric substitution:
$$x=tan uRightarrow mathrm dx=sec^2u mathrm du$$
The change of bounds:
$$int_0^1mapsto int_0^{pi/4}$$
Hence
$$I_0=int_0^{pi/4}sqrt{1+tan^2u}sec^2u mathrm du$$
$$I_0=int_0^{pi/4}sqrt{sec^2u}sec^2u mathrm du$$
$$I_0=int_0^{pi/4}sec usec^2u mathrm du=int_0^{pi/4}sec^3u mathrm du$$
We then integrate by parts:
$$mathrm dV=sec^2u mathrm duRightarrow V=tan u$$
$$U=sec uRightarrow mathrm dU=sec utan u mathrm du$$
Which gives
$$I_0=sec utan ubig|_0^{pi/4}-int_0^{pi/4}tan usec utan u mathrm du$$
$$I_0=sqrt{2}-int_0^{pi/4}sec utan^2u mathrm du$$
$$I_0=sqrt{2}-int_0^{pi/4}sec u(sec^2u-1) mathrm du$$
$$I_0=sqrt{2}-int_0^{pi/4}sec^3u mathrm du+int_0^{pi/4}sec u mathrm du$$
$$I_0=sqrt{2}-I_0+int_0^{pi/4}sec u mathrm du$$
$$2I_0=sqrt{2}+int_0^{pi/4}sec u mathrm du$$
$$2I_0=sqrt{2}+log(sec u+tan u)big|_0^{pi/4}$$
$$2I_0=sqrt{2}+log(1+sqrt2)$$
$$I_0=frac{sqrt{2}+log(1+sqrt2)}2$$
$$I_1=int_0^1xsqrt{1+x^2} mathrm dx$$
Substitution:
$$w^2=x^2+1Rightarrow wmathrm dw=xmathrm dx$$
$$int_0^1mapsto int_1^{sqrt2}$$
This gives
$$I_1=int_1^{sqrt2}sqrt{w^2}w mathrm dw$$
$$I_1=int_1^{sqrt2}w^2 mathrm dw$$
$$I_1=frac{w^3}3bigg|_1^{sqrt2}$$
$$I_1=frac{2^{3/2}-1}3$$
Finally:
$$I=frac{a_0}2bigg(sqrt2+log(1+sqrt2)bigg)+frac{a_1}3big(2^{3/2}-1big)$$
$endgroup$
$$I=int_0^1(a_0+a_1x)sqrt{1+x^2} mathrm dx$$
$$I=a_0int_0^1sqrt{1+x^2} mathrm dx+a_1int_0^1xsqrt{1+x^2} mathrm dx$$
$$I=a_0I_0+a_1I_1$$
$$I_0=int_0^1sqrt{1+x^2} mathrm dx$$
For this we will use a trigonometric substitution:
$$x=tan uRightarrow mathrm dx=sec^2u mathrm du$$
The change of bounds:
$$int_0^1mapsto int_0^{pi/4}$$
Hence
$$I_0=int_0^{pi/4}sqrt{1+tan^2u}sec^2u mathrm du$$
$$I_0=int_0^{pi/4}sqrt{sec^2u}sec^2u mathrm du$$
$$I_0=int_0^{pi/4}sec usec^2u mathrm du=int_0^{pi/4}sec^3u mathrm du$$
We then integrate by parts:
$$mathrm dV=sec^2u mathrm duRightarrow V=tan u$$
$$U=sec uRightarrow mathrm dU=sec utan u mathrm du$$
Which gives
$$I_0=sec utan ubig|_0^{pi/4}-int_0^{pi/4}tan usec utan u mathrm du$$
$$I_0=sqrt{2}-int_0^{pi/4}sec utan^2u mathrm du$$
$$I_0=sqrt{2}-int_0^{pi/4}sec u(sec^2u-1) mathrm du$$
$$I_0=sqrt{2}-int_0^{pi/4}sec^3u mathrm du+int_0^{pi/4}sec u mathrm du$$
$$I_0=sqrt{2}-I_0+int_0^{pi/4}sec u mathrm du$$
$$2I_0=sqrt{2}+int_0^{pi/4}sec u mathrm du$$
$$2I_0=sqrt{2}+log(sec u+tan u)big|_0^{pi/4}$$
$$2I_0=sqrt{2}+log(1+sqrt2)$$
$$I_0=frac{sqrt{2}+log(1+sqrt2)}2$$
$$I_1=int_0^1xsqrt{1+x^2} mathrm dx$$
Substitution:
$$w^2=x^2+1Rightarrow wmathrm dw=xmathrm dx$$
$$int_0^1mapsto int_1^{sqrt2}$$
This gives
$$I_1=int_1^{sqrt2}sqrt{w^2}w mathrm dw$$
$$I_1=int_1^{sqrt2}w^2 mathrm dw$$
$$I_1=frac{w^3}3bigg|_1^{sqrt2}$$
$$I_1=frac{2^{3/2}-1}3$$
Finally:
$$I=frac{a_0}2bigg(sqrt2+log(1+sqrt2)bigg)+frac{a_1}3big(2^{3/2}-1big)$$
answered Dec 2 '18 at 0:11
clathratusclathratus
3,499331
3,499331
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3021529%2fintegral-equation-with-a-square-root-seems-to-go-on%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
MathJax hint: To group things under a square root, enclose them in braces, so sqrt{1+2} gives $sqrt {1+2}$. It works everywhere, like superscripts and subscripts. Is the last term just $a_1y$ or is $a_1$ a function of $y$?
$endgroup$
– Ross Millikan
Dec 1 '18 at 16:33
$begingroup$
it is a1y @RossMillikan. So there should be no brackets around y
$endgroup$
– p s
Dec 1 '18 at 16:38
1
$begingroup$
Break it into two integrals. For the first, try a trig substitution. For the second, do a change of variables.
$endgroup$
– Cameron Williams
Dec 1 '18 at 16:40
$begingroup$
@CameronWilliams. For the second integral, is that the same as integration by substitution.
$endgroup$
– p s
Dec 1 '18 at 16:48