Integral equation with a square root seems to go on












2












$begingroup$


$$ int_0^1 sqrt{1+y^2} (a_0 + a_1y) dy
$$



I have tried to solve this equation by using integration by parts. I am using the square root as the part which I am differentiating. By using this, the method seems like it is ongoing and does not have a final answer. Any guidance will be much appreciated



I am still trying to figure out the formatting so please forgive me










share|cite|improve this question











$endgroup$












  • $begingroup$
    MathJax hint: To group things under a square root, enclose them in braces, so sqrt{1+2} gives $sqrt {1+2}$. It works everywhere, like superscripts and subscripts. Is the last term just $a_1y$ or is $a_1$ a function of $y$?
    $endgroup$
    – Ross Millikan
    Dec 1 '18 at 16:33












  • $begingroup$
    it is a1y @RossMillikan. So there should be no brackets around y
    $endgroup$
    – p s
    Dec 1 '18 at 16:38








  • 1




    $begingroup$
    Break it into two integrals. For the first, try a trig substitution. For the second, do a change of variables.
    $endgroup$
    – Cameron Williams
    Dec 1 '18 at 16:40










  • $begingroup$
    @CameronWilliams. For the second integral, is that the same as integration by substitution.
    $endgroup$
    – p s
    Dec 1 '18 at 16:48
















2












$begingroup$


$$ int_0^1 sqrt{1+y^2} (a_0 + a_1y) dy
$$



I have tried to solve this equation by using integration by parts. I am using the square root as the part which I am differentiating. By using this, the method seems like it is ongoing and does not have a final answer. Any guidance will be much appreciated



I am still trying to figure out the formatting so please forgive me










share|cite|improve this question











$endgroup$












  • $begingroup$
    MathJax hint: To group things under a square root, enclose them in braces, so sqrt{1+2} gives $sqrt {1+2}$. It works everywhere, like superscripts and subscripts. Is the last term just $a_1y$ or is $a_1$ a function of $y$?
    $endgroup$
    – Ross Millikan
    Dec 1 '18 at 16:33












  • $begingroup$
    it is a1y @RossMillikan. So there should be no brackets around y
    $endgroup$
    – p s
    Dec 1 '18 at 16:38








  • 1




    $begingroup$
    Break it into two integrals. For the first, try a trig substitution. For the second, do a change of variables.
    $endgroup$
    – Cameron Williams
    Dec 1 '18 at 16:40










  • $begingroup$
    @CameronWilliams. For the second integral, is that the same as integration by substitution.
    $endgroup$
    – p s
    Dec 1 '18 at 16:48














2












2








2





$begingroup$


$$ int_0^1 sqrt{1+y^2} (a_0 + a_1y) dy
$$



I have tried to solve this equation by using integration by parts. I am using the square root as the part which I am differentiating. By using this, the method seems like it is ongoing and does not have a final answer. Any guidance will be much appreciated



I am still trying to figure out the formatting so please forgive me










share|cite|improve this question











$endgroup$




$$ int_0^1 sqrt{1+y^2} (a_0 + a_1y) dy
$$



I have tried to solve this equation by using integration by parts. I am using the square root as the part which I am differentiating. By using this, the method seems like it is ongoing and does not have a final answer. Any guidance will be much appreciated



I am still trying to figure out the formatting so please forgive me







calculus integration






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 1 '18 at 16:38







p s

















asked Dec 1 '18 at 16:27









p sp s

357




357












  • $begingroup$
    MathJax hint: To group things under a square root, enclose them in braces, so sqrt{1+2} gives $sqrt {1+2}$. It works everywhere, like superscripts and subscripts. Is the last term just $a_1y$ or is $a_1$ a function of $y$?
    $endgroup$
    – Ross Millikan
    Dec 1 '18 at 16:33












  • $begingroup$
    it is a1y @RossMillikan. So there should be no brackets around y
    $endgroup$
    – p s
    Dec 1 '18 at 16:38








  • 1




    $begingroup$
    Break it into two integrals. For the first, try a trig substitution. For the second, do a change of variables.
    $endgroup$
    – Cameron Williams
    Dec 1 '18 at 16:40










  • $begingroup$
    @CameronWilliams. For the second integral, is that the same as integration by substitution.
    $endgroup$
    – p s
    Dec 1 '18 at 16:48


















  • $begingroup$
    MathJax hint: To group things under a square root, enclose them in braces, so sqrt{1+2} gives $sqrt {1+2}$. It works everywhere, like superscripts and subscripts. Is the last term just $a_1y$ or is $a_1$ a function of $y$?
    $endgroup$
    – Ross Millikan
    Dec 1 '18 at 16:33












  • $begingroup$
    it is a1y @RossMillikan. So there should be no brackets around y
    $endgroup$
    – p s
    Dec 1 '18 at 16:38








  • 1




    $begingroup$
    Break it into two integrals. For the first, try a trig substitution. For the second, do a change of variables.
    $endgroup$
    – Cameron Williams
    Dec 1 '18 at 16:40










  • $begingroup$
    @CameronWilliams. For the second integral, is that the same as integration by substitution.
    $endgroup$
    – p s
    Dec 1 '18 at 16:48
















$begingroup$
MathJax hint: To group things under a square root, enclose them in braces, so sqrt{1+2} gives $sqrt {1+2}$. It works everywhere, like superscripts and subscripts. Is the last term just $a_1y$ or is $a_1$ a function of $y$?
$endgroup$
– Ross Millikan
Dec 1 '18 at 16:33






$begingroup$
MathJax hint: To group things under a square root, enclose them in braces, so sqrt{1+2} gives $sqrt {1+2}$. It works everywhere, like superscripts and subscripts. Is the last term just $a_1y$ or is $a_1$ a function of $y$?
$endgroup$
– Ross Millikan
Dec 1 '18 at 16:33














$begingroup$
it is a1y @RossMillikan. So there should be no brackets around y
$endgroup$
– p s
Dec 1 '18 at 16:38






$begingroup$
it is a1y @RossMillikan. So there should be no brackets around y
$endgroup$
– p s
Dec 1 '18 at 16:38






1




1




$begingroup$
Break it into two integrals. For the first, try a trig substitution. For the second, do a change of variables.
$endgroup$
– Cameron Williams
Dec 1 '18 at 16:40




$begingroup$
Break it into two integrals. For the first, try a trig substitution. For the second, do a change of variables.
$endgroup$
– Cameron Williams
Dec 1 '18 at 16:40












$begingroup$
@CameronWilliams. For the second integral, is that the same as integration by substitution.
$endgroup$
– p s
Dec 1 '18 at 16:48




$begingroup$
@CameronWilliams. For the second integral, is that the same as integration by substitution.
$endgroup$
– p s
Dec 1 '18 at 16:48










1 Answer
1






active

oldest

votes


















0












$begingroup$

$$I=int_0^1(a_0+a_1x)sqrt{1+x^2} mathrm dx$$
$$I=a_0int_0^1sqrt{1+x^2} mathrm dx+a_1int_0^1xsqrt{1+x^2} mathrm dx$$
$$I=a_0I_0+a_1I_1$$





$$I_0=int_0^1sqrt{1+x^2} mathrm dx$$
For this we will use a trigonometric substitution:
$$x=tan uRightarrow mathrm dx=sec^2u mathrm du$$
The change of bounds:
$$int_0^1mapsto int_0^{pi/4}$$
Hence
$$I_0=int_0^{pi/4}sqrt{1+tan^2u}sec^2u mathrm du$$
$$I_0=int_0^{pi/4}sqrt{sec^2u}sec^2u mathrm du$$
$$I_0=int_0^{pi/4}sec usec^2u mathrm du=int_0^{pi/4}sec^3u mathrm du$$
We then integrate by parts:
$$mathrm dV=sec^2u mathrm duRightarrow V=tan u$$
$$U=sec uRightarrow mathrm dU=sec utan u mathrm du$$
Which gives
$$I_0=sec utan ubig|_0^{pi/4}-int_0^{pi/4}tan usec utan u mathrm du$$
$$I_0=sqrt{2}-int_0^{pi/4}sec utan^2u mathrm du$$
$$I_0=sqrt{2}-int_0^{pi/4}sec u(sec^2u-1) mathrm du$$
$$I_0=sqrt{2}-int_0^{pi/4}sec^3u mathrm du+int_0^{pi/4}sec u mathrm du$$
$$I_0=sqrt{2}-I_0+int_0^{pi/4}sec u mathrm du$$
$$2I_0=sqrt{2}+int_0^{pi/4}sec u mathrm du$$
$$2I_0=sqrt{2}+log(sec u+tan u)big|_0^{pi/4}$$
$$2I_0=sqrt{2}+log(1+sqrt2)$$
$$I_0=frac{sqrt{2}+log(1+sqrt2)}2$$





$$I_1=int_0^1xsqrt{1+x^2} mathrm dx$$
Substitution:
$$w^2=x^2+1Rightarrow wmathrm dw=xmathrm dx$$
$$int_0^1mapsto int_1^{sqrt2}$$
This gives
$$I_1=int_1^{sqrt2}sqrt{w^2}w mathrm dw$$
$$I_1=int_1^{sqrt2}w^2 mathrm dw$$
$$I_1=frac{w^3}3bigg|_1^{sqrt2}$$
$$I_1=frac{2^{3/2}-1}3$$





Finally:
$$I=frac{a_0}2bigg(sqrt2+log(1+sqrt2)bigg)+frac{a_1}3big(2^{3/2}-1big)$$






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3021529%2fintegral-equation-with-a-square-root-seems-to-go-on%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    $$I=int_0^1(a_0+a_1x)sqrt{1+x^2} mathrm dx$$
    $$I=a_0int_0^1sqrt{1+x^2} mathrm dx+a_1int_0^1xsqrt{1+x^2} mathrm dx$$
    $$I=a_0I_0+a_1I_1$$





    $$I_0=int_0^1sqrt{1+x^2} mathrm dx$$
    For this we will use a trigonometric substitution:
    $$x=tan uRightarrow mathrm dx=sec^2u mathrm du$$
    The change of bounds:
    $$int_0^1mapsto int_0^{pi/4}$$
    Hence
    $$I_0=int_0^{pi/4}sqrt{1+tan^2u}sec^2u mathrm du$$
    $$I_0=int_0^{pi/4}sqrt{sec^2u}sec^2u mathrm du$$
    $$I_0=int_0^{pi/4}sec usec^2u mathrm du=int_0^{pi/4}sec^3u mathrm du$$
    We then integrate by parts:
    $$mathrm dV=sec^2u mathrm duRightarrow V=tan u$$
    $$U=sec uRightarrow mathrm dU=sec utan u mathrm du$$
    Which gives
    $$I_0=sec utan ubig|_0^{pi/4}-int_0^{pi/4}tan usec utan u mathrm du$$
    $$I_0=sqrt{2}-int_0^{pi/4}sec utan^2u mathrm du$$
    $$I_0=sqrt{2}-int_0^{pi/4}sec u(sec^2u-1) mathrm du$$
    $$I_0=sqrt{2}-int_0^{pi/4}sec^3u mathrm du+int_0^{pi/4}sec u mathrm du$$
    $$I_0=sqrt{2}-I_0+int_0^{pi/4}sec u mathrm du$$
    $$2I_0=sqrt{2}+int_0^{pi/4}sec u mathrm du$$
    $$2I_0=sqrt{2}+log(sec u+tan u)big|_0^{pi/4}$$
    $$2I_0=sqrt{2}+log(1+sqrt2)$$
    $$I_0=frac{sqrt{2}+log(1+sqrt2)}2$$





    $$I_1=int_0^1xsqrt{1+x^2} mathrm dx$$
    Substitution:
    $$w^2=x^2+1Rightarrow wmathrm dw=xmathrm dx$$
    $$int_0^1mapsto int_1^{sqrt2}$$
    This gives
    $$I_1=int_1^{sqrt2}sqrt{w^2}w mathrm dw$$
    $$I_1=int_1^{sqrt2}w^2 mathrm dw$$
    $$I_1=frac{w^3}3bigg|_1^{sqrt2}$$
    $$I_1=frac{2^{3/2}-1}3$$





    Finally:
    $$I=frac{a_0}2bigg(sqrt2+log(1+sqrt2)bigg)+frac{a_1}3big(2^{3/2}-1big)$$






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      $$I=int_0^1(a_0+a_1x)sqrt{1+x^2} mathrm dx$$
      $$I=a_0int_0^1sqrt{1+x^2} mathrm dx+a_1int_0^1xsqrt{1+x^2} mathrm dx$$
      $$I=a_0I_0+a_1I_1$$





      $$I_0=int_0^1sqrt{1+x^2} mathrm dx$$
      For this we will use a trigonometric substitution:
      $$x=tan uRightarrow mathrm dx=sec^2u mathrm du$$
      The change of bounds:
      $$int_0^1mapsto int_0^{pi/4}$$
      Hence
      $$I_0=int_0^{pi/4}sqrt{1+tan^2u}sec^2u mathrm du$$
      $$I_0=int_0^{pi/4}sqrt{sec^2u}sec^2u mathrm du$$
      $$I_0=int_0^{pi/4}sec usec^2u mathrm du=int_0^{pi/4}sec^3u mathrm du$$
      We then integrate by parts:
      $$mathrm dV=sec^2u mathrm duRightarrow V=tan u$$
      $$U=sec uRightarrow mathrm dU=sec utan u mathrm du$$
      Which gives
      $$I_0=sec utan ubig|_0^{pi/4}-int_0^{pi/4}tan usec utan u mathrm du$$
      $$I_0=sqrt{2}-int_0^{pi/4}sec utan^2u mathrm du$$
      $$I_0=sqrt{2}-int_0^{pi/4}sec u(sec^2u-1) mathrm du$$
      $$I_0=sqrt{2}-int_0^{pi/4}sec^3u mathrm du+int_0^{pi/4}sec u mathrm du$$
      $$I_0=sqrt{2}-I_0+int_0^{pi/4}sec u mathrm du$$
      $$2I_0=sqrt{2}+int_0^{pi/4}sec u mathrm du$$
      $$2I_0=sqrt{2}+log(sec u+tan u)big|_0^{pi/4}$$
      $$2I_0=sqrt{2}+log(1+sqrt2)$$
      $$I_0=frac{sqrt{2}+log(1+sqrt2)}2$$





      $$I_1=int_0^1xsqrt{1+x^2} mathrm dx$$
      Substitution:
      $$w^2=x^2+1Rightarrow wmathrm dw=xmathrm dx$$
      $$int_0^1mapsto int_1^{sqrt2}$$
      This gives
      $$I_1=int_1^{sqrt2}sqrt{w^2}w mathrm dw$$
      $$I_1=int_1^{sqrt2}w^2 mathrm dw$$
      $$I_1=frac{w^3}3bigg|_1^{sqrt2}$$
      $$I_1=frac{2^{3/2}-1}3$$





      Finally:
      $$I=frac{a_0}2bigg(sqrt2+log(1+sqrt2)bigg)+frac{a_1}3big(2^{3/2}-1big)$$






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        $$I=int_0^1(a_0+a_1x)sqrt{1+x^2} mathrm dx$$
        $$I=a_0int_0^1sqrt{1+x^2} mathrm dx+a_1int_0^1xsqrt{1+x^2} mathrm dx$$
        $$I=a_0I_0+a_1I_1$$





        $$I_0=int_0^1sqrt{1+x^2} mathrm dx$$
        For this we will use a trigonometric substitution:
        $$x=tan uRightarrow mathrm dx=sec^2u mathrm du$$
        The change of bounds:
        $$int_0^1mapsto int_0^{pi/4}$$
        Hence
        $$I_0=int_0^{pi/4}sqrt{1+tan^2u}sec^2u mathrm du$$
        $$I_0=int_0^{pi/4}sqrt{sec^2u}sec^2u mathrm du$$
        $$I_0=int_0^{pi/4}sec usec^2u mathrm du=int_0^{pi/4}sec^3u mathrm du$$
        We then integrate by parts:
        $$mathrm dV=sec^2u mathrm duRightarrow V=tan u$$
        $$U=sec uRightarrow mathrm dU=sec utan u mathrm du$$
        Which gives
        $$I_0=sec utan ubig|_0^{pi/4}-int_0^{pi/4}tan usec utan u mathrm du$$
        $$I_0=sqrt{2}-int_0^{pi/4}sec utan^2u mathrm du$$
        $$I_0=sqrt{2}-int_0^{pi/4}sec u(sec^2u-1) mathrm du$$
        $$I_0=sqrt{2}-int_0^{pi/4}sec^3u mathrm du+int_0^{pi/4}sec u mathrm du$$
        $$I_0=sqrt{2}-I_0+int_0^{pi/4}sec u mathrm du$$
        $$2I_0=sqrt{2}+int_0^{pi/4}sec u mathrm du$$
        $$2I_0=sqrt{2}+log(sec u+tan u)big|_0^{pi/4}$$
        $$2I_0=sqrt{2}+log(1+sqrt2)$$
        $$I_0=frac{sqrt{2}+log(1+sqrt2)}2$$





        $$I_1=int_0^1xsqrt{1+x^2} mathrm dx$$
        Substitution:
        $$w^2=x^2+1Rightarrow wmathrm dw=xmathrm dx$$
        $$int_0^1mapsto int_1^{sqrt2}$$
        This gives
        $$I_1=int_1^{sqrt2}sqrt{w^2}w mathrm dw$$
        $$I_1=int_1^{sqrt2}w^2 mathrm dw$$
        $$I_1=frac{w^3}3bigg|_1^{sqrt2}$$
        $$I_1=frac{2^{3/2}-1}3$$





        Finally:
        $$I=frac{a_0}2bigg(sqrt2+log(1+sqrt2)bigg)+frac{a_1}3big(2^{3/2}-1big)$$






        share|cite|improve this answer









        $endgroup$



        $$I=int_0^1(a_0+a_1x)sqrt{1+x^2} mathrm dx$$
        $$I=a_0int_0^1sqrt{1+x^2} mathrm dx+a_1int_0^1xsqrt{1+x^2} mathrm dx$$
        $$I=a_0I_0+a_1I_1$$





        $$I_0=int_0^1sqrt{1+x^2} mathrm dx$$
        For this we will use a trigonometric substitution:
        $$x=tan uRightarrow mathrm dx=sec^2u mathrm du$$
        The change of bounds:
        $$int_0^1mapsto int_0^{pi/4}$$
        Hence
        $$I_0=int_0^{pi/4}sqrt{1+tan^2u}sec^2u mathrm du$$
        $$I_0=int_0^{pi/4}sqrt{sec^2u}sec^2u mathrm du$$
        $$I_0=int_0^{pi/4}sec usec^2u mathrm du=int_0^{pi/4}sec^3u mathrm du$$
        We then integrate by parts:
        $$mathrm dV=sec^2u mathrm duRightarrow V=tan u$$
        $$U=sec uRightarrow mathrm dU=sec utan u mathrm du$$
        Which gives
        $$I_0=sec utan ubig|_0^{pi/4}-int_0^{pi/4}tan usec utan u mathrm du$$
        $$I_0=sqrt{2}-int_0^{pi/4}sec utan^2u mathrm du$$
        $$I_0=sqrt{2}-int_0^{pi/4}sec u(sec^2u-1) mathrm du$$
        $$I_0=sqrt{2}-int_0^{pi/4}sec^3u mathrm du+int_0^{pi/4}sec u mathrm du$$
        $$I_0=sqrt{2}-I_0+int_0^{pi/4}sec u mathrm du$$
        $$2I_0=sqrt{2}+int_0^{pi/4}sec u mathrm du$$
        $$2I_0=sqrt{2}+log(sec u+tan u)big|_0^{pi/4}$$
        $$2I_0=sqrt{2}+log(1+sqrt2)$$
        $$I_0=frac{sqrt{2}+log(1+sqrt2)}2$$





        $$I_1=int_0^1xsqrt{1+x^2} mathrm dx$$
        Substitution:
        $$w^2=x^2+1Rightarrow wmathrm dw=xmathrm dx$$
        $$int_0^1mapsto int_1^{sqrt2}$$
        This gives
        $$I_1=int_1^{sqrt2}sqrt{w^2}w mathrm dw$$
        $$I_1=int_1^{sqrt2}w^2 mathrm dw$$
        $$I_1=frac{w^3}3bigg|_1^{sqrt2}$$
        $$I_1=frac{2^{3/2}-1}3$$





        Finally:
        $$I=frac{a_0}2bigg(sqrt2+log(1+sqrt2)bigg)+frac{a_1}3big(2^{3/2}-1big)$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 2 '18 at 0:11









        clathratusclathratus

        3,499331




        3,499331






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3021529%2fintegral-equation-with-a-square-root-seems-to-go-on%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Probability when a professor distributes a quiz and homework assignment to a class of n students.

            Aardman Animations

            Are they similar matrix