How to evaluate this line integral over a plane curve?












0












$begingroup$


How do I integrate $f$ over the given curve?



$$f(x,y)= frac{x^3}{y};quad C: y=frac{x^2}{2} quad text{for}; 0 leq x leq 2.$$



I can't figure this out... can anyone show me how to solve it?



The answer is supposed to be $displaystyle frac{10sqrt{5}-2}{3}$.










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    How do I integrate $f$ over the given curve?



    $$f(x,y)= frac{x^3}{y};quad C: y=frac{x^2}{2} quad text{for}; 0 leq x leq 2.$$



    I can't figure this out... can anyone show me how to solve it?



    The answer is supposed to be $displaystyle frac{10sqrt{5}-2}{3}$.










    share|cite|improve this question











    $endgroup$















      0












      0








      0





      $begingroup$


      How do I integrate $f$ over the given curve?



      $$f(x,y)= frac{x^3}{y};quad C: y=frac{x^2}{2} quad text{for}; 0 leq x leq 2.$$



      I can't figure this out... can anyone show me how to solve it?



      The answer is supposed to be $displaystyle frac{10sqrt{5}-2}{3}$.










      share|cite|improve this question











      $endgroup$




      How do I integrate $f$ over the given curve?



      $$f(x,y)= frac{x^3}{y};quad C: y=frac{x^2}{2} quad text{for}; 0 leq x leq 2.$$



      I can't figure this out... can anyone show me how to solve it?



      The answer is supposed to be $displaystyle frac{10sqrt{5}-2}{3}$.







      multivariable-calculus






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Nov 25 '12 at 23:08









      amWhy

      192k28225439




      192k28225439










      asked Nov 25 '12 at 21:22







      user39794





























          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          Parametrize the curve $C$ by $gamma : [0,2] rightarrow mathbb{R}^2$ with $ gamma(t) = left( t, frac{t^2}{2} right).$ Then,
          $$ int_{gamma} f(x,y) mathrm{ds} = int_0^2 f(gamma(t)) ||dot{gamma}(t)|| dt = int_0^2 frac{t^3}{frac{t^2}{2}} ||(1, t)|| dt = int_0^2 2t sqrt{1 + t^2} dt.$$
          Solve this integral by substitution.






          share|cite|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f244537%2fhow-to-evaluate-this-line-integral-over-a-plane-curve%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown
























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0












            $begingroup$

            Parametrize the curve $C$ by $gamma : [0,2] rightarrow mathbb{R}^2$ with $ gamma(t) = left( t, frac{t^2}{2} right).$ Then,
            $$ int_{gamma} f(x,y) mathrm{ds} = int_0^2 f(gamma(t)) ||dot{gamma}(t)|| dt = int_0^2 frac{t^3}{frac{t^2}{2}} ||(1, t)|| dt = int_0^2 2t sqrt{1 + t^2} dt.$$
            Solve this integral by substitution.






            share|cite|improve this answer











            $endgroup$


















              0












              $begingroup$

              Parametrize the curve $C$ by $gamma : [0,2] rightarrow mathbb{R}^2$ with $ gamma(t) = left( t, frac{t^2}{2} right).$ Then,
              $$ int_{gamma} f(x,y) mathrm{ds} = int_0^2 f(gamma(t)) ||dot{gamma}(t)|| dt = int_0^2 frac{t^3}{frac{t^2}{2}} ||(1, t)|| dt = int_0^2 2t sqrt{1 + t^2} dt.$$
              Solve this integral by substitution.






              share|cite|improve this answer











              $endgroup$
















                0












                0








                0





                $begingroup$

                Parametrize the curve $C$ by $gamma : [0,2] rightarrow mathbb{R}^2$ with $ gamma(t) = left( t, frac{t^2}{2} right).$ Then,
                $$ int_{gamma} f(x,y) mathrm{ds} = int_0^2 f(gamma(t)) ||dot{gamma}(t)|| dt = int_0^2 frac{t^3}{frac{t^2}{2}} ||(1, t)|| dt = int_0^2 2t sqrt{1 + t^2} dt.$$
                Solve this integral by substitution.






                share|cite|improve this answer











                $endgroup$



                Parametrize the curve $C$ by $gamma : [0,2] rightarrow mathbb{R}^2$ with $ gamma(t) = left( t, frac{t^2}{2} right).$ Then,
                $$ int_{gamma} f(x,y) mathrm{ds} = int_0^2 f(gamma(t)) ||dot{gamma}(t)|| dt = int_0^2 frac{t^3}{frac{t^2}{2}} ||(1, t)|| dt = int_0^2 2t sqrt{1 + t^2} dt.$$
                Solve this integral by substitution.







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Dec 1 '18 at 14:38

























                answered Nov 25 '12 at 21:36









                levaplevap

                47k23273




                47k23273






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f244537%2fhow-to-evaluate-this-line-integral-over-a-plane-curve%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Probability when a professor distributes a quiz and homework assignment to a class of n students.

                    Aardman Animations

                    Are they similar matrix