comparing Asymptotic functions $ 3^{{2}^{n}}$ and $n! times n^{3}$
$begingroup$
$f(n)= 3^{{2}^{n}}$
$g(n)=n! times n^{3}$
$text{which is asymptotically greater} ?$
My Approach-:
$$f(n)=e^{log 4^{{3}^{n}} }$$
$$g(n)=e^{log n! times n^{3}}$$
i am comparing just the power of the functions
i.e
$$log 3^{{2}^{n}}$$ and $$log n! times n^{3}$$
$$f_1(n)=log 3^{{2}^{n}}=2^{n} log 3$$
$$f_2(n)=log (n! times n^{3})=log (n!) +log (n^{3}) =n log n+3 log n$$
Again we can express $f_1(n) $ and $f_2(n)$ as
$f_1(n)=e^{log( 2^n log 3)}$ and $f_2(n)=e^{log( n log n)}$
Again comparing the powers,
$f_{11}(n)=log (2^n log 3)=n + log log 3$
$f_{12}=log( n log n)=log n + log log n $
here $f_{11}(n) >f_{12}(n) Rightarrow f_{1}(n)>f_{12}(n) Rightarrow f(n)>g(n) $
here $>$ means asymptotically greater
Am i correct?
functions algorithms asymptotics
$endgroup$
add a comment |
$begingroup$
$f(n)= 3^{{2}^{n}}$
$g(n)=n! times n^{3}$
$text{which is asymptotically greater} ?$
My Approach-:
$$f(n)=e^{log 4^{{3}^{n}} }$$
$$g(n)=e^{log n! times n^{3}}$$
i am comparing just the power of the functions
i.e
$$log 3^{{2}^{n}}$$ and $$log n! times n^{3}$$
$$f_1(n)=log 3^{{2}^{n}}=2^{n} log 3$$
$$f_2(n)=log (n! times n^{3})=log (n!) +log (n^{3}) =n log n+3 log n$$
Again we can express $f_1(n) $ and $f_2(n)$ as
$f_1(n)=e^{log( 2^n log 3)}$ and $f_2(n)=e^{log( n log n)}$
Again comparing the powers,
$f_{11}(n)=log (2^n log 3)=n + log log 3$
$f_{12}=log( n log n)=log n + log log n $
here $f_{11}(n) >f_{12}(n) Rightarrow f_{1}(n)>f_{12}(n) Rightarrow f(n)>g(n) $
here $>$ means asymptotically greater
Am i correct?
functions algorithms asymptotics
$endgroup$
$begingroup$
Final result is correct, the way you got to that result might be debatable
$endgroup$
– Jakobian
Dec 1 '18 at 16:37
add a comment |
$begingroup$
$f(n)= 3^{{2}^{n}}$
$g(n)=n! times n^{3}$
$text{which is asymptotically greater} ?$
My Approach-:
$$f(n)=e^{log 4^{{3}^{n}} }$$
$$g(n)=e^{log n! times n^{3}}$$
i am comparing just the power of the functions
i.e
$$log 3^{{2}^{n}}$$ and $$log n! times n^{3}$$
$$f_1(n)=log 3^{{2}^{n}}=2^{n} log 3$$
$$f_2(n)=log (n! times n^{3})=log (n!) +log (n^{3}) =n log n+3 log n$$
Again we can express $f_1(n) $ and $f_2(n)$ as
$f_1(n)=e^{log( 2^n log 3)}$ and $f_2(n)=e^{log( n log n)}$
Again comparing the powers,
$f_{11}(n)=log (2^n log 3)=n + log log 3$
$f_{12}=log( n log n)=log n + log log n $
here $f_{11}(n) >f_{12}(n) Rightarrow f_{1}(n)>f_{12}(n) Rightarrow f(n)>g(n) $
here $>$ means asymptotically greater
Am i correct?
functions algorithms asymptotics
$endgroup$
$f(n)= 3^{{2}^{n}}$
$g(n)=n! times n^{3}$
$text{which is asymptotically greater} ?$
My Approach-:
$$f(n)=e^{log 4^{{3}^{n}} }$$
$$g(n)=e^{log n! times n^{3}}$$
i am comparing just the power of the functions
i.e
$$log 3^{{2}^{n}}$$ and $$log n! times n^{3}$$
$$f_1(n)=log 3^{{2}^{n}}=2^{n} log 3$$
$$f_2(n)=log (n! times n^{3})=log (n!) +log (n^{3}) =n log n+3 log n$$
Again we can express $f_1(n) $ and $f_2(n)$ as
$f_1(n)=e^{log( 2^n log 3)}$ and $f_2(n)=e^{log( n log n)}$
Again comparing the powers,
$f_{11}(n)=log (2^n log 3)=n + log log 3$
$f_{12}=log( n log n)=log n + log log n $
here $f_{11}(n) >f_{12}(n) Rightarrow f_{1}(n)>f_{12}(n) Rightarrow f(n)>g(n) $
here $>$ means asymptotically greater
Am i correct?
functions algorithms asymptotics
functions algorithms asymptotics
asked Dec 1 '18 at 16:35
viratvirat
18118
18118
$begingroup$
Final result is correct, the way you got to that result might be debatable
$endgroup$
– Jakobian
Dec 1 '18 at 16:37
add a comment |
$begingroup$
Final result is correct, the way you got to that result might be debatable
$endgroup$
– Jakobian
Dec 1 '18 at 16:37
$begingroup$
Final result is correct, the way you got to that result might be debatable
$endgroup$
– Jakobian
Dec 1 '18 at 16:37
$begingroup$
Final result is correct, the way you got to that result might be debatable
$endgroup$
– Jakobian
Dec 1 '18 at 16:37
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
You can do it easily by applying $log$ function to $f(n)$ and $g(n)$.
$$log(f(n)) = 2^nlog(3), log(g(n)) = log(n!) + 3log(n)$$
As we know $log(n!) = Theta(nlog(n))$, we have:
$$g(n) = Theta(nlog(n)), f(n) = Theta(2^n)$$
Hence, $f(n)$ is greater than $g(n)$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3021540%2fcomparing-asymptotic-functions-32n-and-n-times-n3%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You can do it easily by applying $log$ function to $f(n)$ and $g(n)$.
$$log(f(n)) = 2^nlog(3), log(g(n)) = log(n!) + 3log(n)$$
As we know $log(n!) = Theta(nlog(n))$, we have:
$$g(n) = Theta(nlog(n)), f(n) = Theta(2^n)$$
Hence, $f(n)$ is greater than $g(n)$.
$endgroup$
add a comment |
$begingroup$
You can do it easily by applying $log$ function to $f(n)$ and $g(n)$.
$$log(f(n)) = 2^nlog(3), log(g(n)) = log(n!) + 3log(n)$$
As we know $log(n!) = Theta(nlog(n))$, we have:
$$g(n) = Theta(nlog(n)), f(n) = Theta(2^n)$$
Hence, $f(n)$ is greater than $g(n)$.
$endgroup$
add a comment |
$begingroup$
You can do it easily by applying $log$ function to $f(n)$ and $g(n)$.
$$log(f(n)) = 2^nlog(3), log(g(n)) = log(n!) + 3log(n)$$
As we know $log(n!) = Theta(nlog(n))$, we have:
$$g(n) = Theta(nlog(n)), f(n) = Theta(2^n)$$
Hence, $f(n)$ is greater than $g(n)$.
$endgroup$
You can do it easily by applying $log$ function to $f(n)$ and $g(n)$.
$$log(f(n)) = 2^nlog(3), log(g(n)) = log(n!) + 3log(n)$$
As we know $log(n!) = Theta(nlog(n))$, we have:
$$g(n) = Theta(nlog(n)), f(n) = Theta(2^n)$$
Hence, $f(n)$ is greater than $g(n)$.
answered Dec 1 '18 at 16:51
OmGOmG
2,180621
2,180621
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3021540%2fcomparing-asymptotic-functions-32n-and-n-times-n3%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Final result is correct, the way you got to that result might be debatable
$endgroup$
– Jakobian
Dec 1 '18 at 16:37