Definite Integration Scaling












0












$begingroup$


Probably a very easy question, sorry.
Suppose we fix some $lambda in mathbb{R}$ and some integrable function $f : [a,b] to mathbb{R}$.
Consider $f_lambda(x) = f(lambda x)$. I want to show that $f(lambda x)$ is integrable of $[tfrac{a}{lambda},tfrac{b}{lambda}]$, and:
$$int_{(tfrac{a}{lambda})}^{(tfrac{b}{lambda})} f_lambda =
frac{1}{lambda}int_a^b f$$

How would I go about showing this from partitions?
(I have shown multiplication by a constant:
$int_a^b lambda f = lambda int_a^b f$, and I tried the same approach. Would I just show it through summations again? I am not quite sure how this translates to an interval and its partition).










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    Probably a very easy question, sorry.
    Suppose we fix some $lambda in mathbb{R}$ and some integrable function $f : [a,b] to mathbb{R}$.
    Consider $f_lambda(x) = f(lambda x)$. I want to show that $f(lambda x)$ is integrable of $[tfrac{a}{lambda},tfrac{b}{lambda}]$, and:
    $$int_{(tfrac{a}{lambda})}^{(tfrac{b}{lambda})} f_lambda =
    frac{1}{lambda}int_a^b f$$

    How would I go about showing this from partitions?
    (I have shown multiplication by a constant:
    $int_a^b lambda f = lambda int_a^b f$, and I tried the same approach. Would I just show it through summations again? I am not quite sure how this translates to an interval and its partition).










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      Probably a very easy question, sorry.
      Suppose we fix some $lambda in mathbb{R}$ and some integrable function $f : [a,b] to mathbb{R}$.
      Consider $f_lambda(x) = f(lambda x)$. I want to show that $f(lambda x)$ is integrable of $[tfrac{a}{lambda},tfrac{b}{lambda}]$, and:
      $$int_{(tfrac{a}{lambda})}^{(tfrac{b}{lambda})} f_lambda =
      frac{1}{lambda}int_a^b f$$

      How would I go about showing this from partitions?
      (I have shown multiplication by a constant:
      $int_a^b lambda f = lambda int_a^b f$, and I tried the same approach. Would I just show it through summations again? I am not quite sure how this translates to an interval and its partition).










      share|cite|improve this question









      $endgroup$




      Probably a very easy question, sorry.
      Suppose we fix some $lambda in mathbb{R}$ and some integrable function $f : [a,b] to mathbb{R}$.
      Consider $f_lambda(x) = f(lambda x)$. I want to show that $f(lambda x)$ is integrable of $[tfrac{a}{lambda},tfrac{b}{lambda}]$, and:
      $$int_{(tfrac{a}{lambda})}^{(tfrac{b}{lambda})} f_lambda =
      frac{1}{lambda}int_a^b f$$

      How would I go about showing this from partitions?
      (I have shown multiplication by a constant:
      $int_a^b lambda f = lambda int_a^b f$, and I tried the same approach. Would I just show it through summations again? I am not quite sure how this translates to an interval and its partition).







      real-analysis integration definite-integrals






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 5 '18 at 14:03









      Eetu KoskelaEetu Koskela

      708




      708






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          Let $P={x_0,dots,x_N}$ be a partition of $[a,b]$ and $xi_kin[x_{k-1},x_k]$. Then
          begin{align}
          sum_{k=1}^Nf(xi_k)(x_k-x_{k-1})&=lambdasum_{k=1}^NfBigl(lambda,frac{xi_k}{lambda}Bigr)Bigl(frac{x_k}{lambda}-frac{x_{k-1}}{lambda}Bigr)\
          &=lambdasum_{k=1}^Nf_lambdaBigl(frac{xi_k}{lambda}Bigr)Bigl(frac{x_k}{lambda}-frac{x_{k-1}}{lambda}Bigr).
          end{align}
          The first summation is a Riemann sum for $int_a^bf$, and the last one for $int_{a/lambda}^{b/lambda}f_lambda$.






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3027102%2fdefinite-integration-scaling%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1












            $begingroup$

            Let $P={x_0,dots,x_N}$ be a partition of $[a,b]$ and $xi_kin[x_{k-1},x_k]$. Then
            begin{align}
            sum_{k=1}^Nf(xi_k)(x_k-x_{k-1})&=lambdasum_{k=1}^NfBigl(lambda,frac{xi_k}{lambda}Bigr)Bigl(frac{x_k}{lambda}-frac{x_{k-1}}{lambda}Bigr)\
            &=lambdasum_{k=1}^Nf_lambdaBigl(frac{xi_k}{lambda}Bigr)Bigl(frac{x_k}{lambda}-frac{x_{k-1}}{lambda}Bigr).
            end{align}
            The first summation is a Riemann sum for $int_a^bf$, and the last one for $int_{a/lambda}^{b/lambda}f_lambda$.






            share|cite|improve this answer









            $endgroup$


















              1












              $begingroup$

              Let $P={x_0,dots,x_N}$ be a partition of $[a,b]$ and $xi_kin[x_{k-1},x_k]$. Then
              begin{align}
              sum_{k=1}^Nf(xi_k)(x_k-x_{k-1})&=lambdasum_{k=1}^NfBigl(lambda,frac{xi_k}{lambda}Bigr)Bigl(frac{x_k}{lambda}-frac{x_{k-1}}{lambda}Bigr)\
              &=lambdasum_{k=1}^Nf_lambdaBigl(frac{xi_k}{lambda}Bigr)Bigl(frac{x_k}{lambda}-frac{x_{k-1}}{lambda}Bigr).
              end{align}
              The first summation is a Riemann sum for $int_a^bf$, and the last one for $int_{a/lambda}^{b/lambda}f_lambda$.






              share|cite|improve this answer









              $endgroup$
















                1












                1








                1





                $begingroup$

                Let $P={x_0,dots,x_N}$ be a partition of $[a,b]$ and $xi_kin[x_{k-1},x_k]$. Then
                begin{align}
                sum_{k=1}^Nf(xi_k)(x_k-x_{k-1})&=lambdasum_{k=1}^NfBigl(lambda,frac{xi_k}{lambda}Bigr)Bigl(frac{x_k}{lambda}-frac{x_{k-1}}{lambda}Bigr)\
                &=lambdasum_{k=1}^Nf_lambdaBigl(frac{xi_k}{lambda}Bigr)Bigl(frac{x_k}{lambda}-frac{x_{k-1}}{lambda}Bigr).
                end{align}
                The first summation is a Riemann sum for $int_a^bf$, and the last one for $int_{a/lambda}^{b/lambda}f_lambda$.






                share|cite|improve this answer









                $endgroup$



                Let $P={x_0,dots,x_N}$ be a partition of $[a,b]$ and $xi_kin[x_{k-1},x_k]$. Then
                begin{align}
                sum_{k=1}^Nf(xi_k)(x_k-x_{k-1})&=lambdasum_{k=1}^NfBigl(lambda,frac{xi_k}{lambda}Bigr)Bigl(frac{x_k}{lambda}-frac{x_{k-1}}{lambda}Bigr)\
                &=lambdasum_{k=1}^Nf_lambdaBigl(frac{xi_k}{lambda}Bigr)Bigl(frac{x_k}{lambda}-frac{x_{k-1}}{lambda}Bigr).
                end{align}
                The first summation is a Riemann sum for $int_a^bf$, and the last one for $int_{a/lambda}^{b/lambda}f_lambda$.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Dec 5 '18 at 15:00









                Julián AguirreJulián Aguirre

                68.1k24094




                68.1k24094






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3027102%2fdefinite-integration-scaling%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Aardman Animations

                    Are they similar matrix

                    “minimization” problem in Euclidean space related to orthonormal basis