Calculate integral with two exponential functions












1












$begingroup$


If $c >0$ and $d >0$, show that



$$intlimits_{0}^infty e^{-cx} frac{d}{x^{frac{3}{2}} sqrt{2 pi}} e^{-frac{d^2}{2x}} , mathrm dx = e^{-dsqrt{2c}}.$$



Obviously we have that
$$intlimits_{0}^infty e^{-cx} frac{d}{x^{frac{3}{2}} sqrt{2 pi}} e^{-frac{d^2}{2x}} , mathrm dx = frac{d}{sqrt{2pi}} intlimits_0^infty frac{e^{-cx-frac{d^2}{2x}}}{x^{frac{3}{2}}} , mathrm dx.$$










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    If $c >0$ and $d >0$, show that



    $$intlimits_{0}^infty e^{-cx} frac{d}{x^{frac{3}{2}} sqrt{2 pi}} e^{-frac{d^2}{2x}} , mathrm dx = e^{-dsqrt{2c}}.$$



    Obviously we have that
    $$intlimits_{0}^infty e^{-cx} frac{d}{x^{frac{3}{2}} sqrt{2 pi}} e^{-frac{d^2}{2x}} , mathrm dx = frac{d}{sqrt{2pi}} intlimits_0^infty frac{e^{-cx-frac{d^2}{2x}}}{x^{frac{3}{2}}} , mathrm dx.$$










    share|cite|improve this question











    $endgroup$















      1












      1








      1





      $begingroup$


      If $c >0$ and $d >0$, show that



      $$intlimits_{0}^infty e^{-cx} frac{d}{x^{frac{3}{2}} sqrt{2 pi}} e^{-frac{d^2}{2x}} , mathrm dx = e^{-dsqrt{2c}}.$$



      Obviously we have that
      $$intlimits_{0}^infty e^{-cx} frac{d}{x^{frac{3}{2}} sqrt{2 pi}} e^{-frac{d^2}{2x}} , mathrm dx = frac{d}{sqrt{2pi}} intlimits_0^infty frac{e^{-cx-frac{d^2}{2x}}}{x^{frac{3}{2}}} , mathrm dx.$$










      share|cite|improve this question











      $endgroup$




      If $c >0$ and $d >0$, show that



      $$intlimits_{0}^infty e^{-cx} frac{d}{x^{frac{3}{2}} sqrt{2 pi}} e^{-frac{d^2}{2x}} , mathrm dx = e^{-dsqrt{2c}}.$$



      Obviously we have that
      $$intlimits_{0}^infty e^{-cx} frac{d}{x^{frac{3}{2}} sqrt{2 pi}} e^{-frac{d^2}{2x}} , mathrm dx = frac{d}{sqrt{2pi}} intlimits_0^infty frac{e^{-cx-frac{d^2}{2x}}}{x^{frac{3}{2}}} , mathrm dx.$$







      integration analysis definite-integrals substitution






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 5 '18 at 13:45







      jwfoerjogrg

















      asked Dec 5 '18 at 13:39









      jwfoerjogrgjwfoerjogrg

      63




      63






















          1 Answer
          1






          active

          oldest

          votes


















          2












          $begingroup$

          $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
          newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
          newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
          newcommand{dd}{mathrm{d}}
          newcommand{ds}[1]{displaystyle{#1}}
          newcommand{expo}[1]{,mathrm{e}^{#1},}
          newcommand{ic}{mathrm{i}}
          newcommand{mc}[1]{mathcal{#1}}
          newcommand{mrm}[1]{mathrm{#1}}
          newcommand{pars}[1]{left(,{#1},right)}
          newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
          newcommand{root}[2]{,sqrt[#1]{,{#2},},}
          newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
          newcommand{verts}[1]{leftvert,{#1},rightvert}$

          begin{align}
          &bbox[10px,#ffd]{int_{0}^{infty}expo{-cx}, {d over x^{3/2}root{2pi}},expo{-d^{2}/pars{2x}},dd x}
          \[5mm] = &
          {d over root{2pi}}int_{0}^{infty}x^{-3/2}
          exppars{-root{c over 2}d
          bracks{{root{2c} over d}x + {d over root{2c}}{1 over x} }}
          ,dd x
          end{align}




          Set $ds{x equiv {d over root{2c}}t^{2} =
          2^{-1/2}dc^{-1/2}, t^{2} implies
          dd x = droot{2 over c}t,dd t =
          2^{1/2}dc^{-1/2}t,dd t}$
          :




          begin{align}
          &bbox[10px,#ffd]{int_{0}^{infty}expo{-cx}, {d over x^{3/2}root{2pi}},expo{-d^{2}/pars{2x}},dd x}
          \[5mm] = &
          {d over root{2pi}}int_{0}^{infty}
          bracks{2^{3/4}d^{-3/2}c^{3/4}t^{-3}}
          exppars{-root{c over 2}dbracks{t^{2} + {1 over t^{2}}}},2^{1/2}dc^{-1/2}t,dd t
          \[5mm] = &
          {2^{5/4}c^{1/4}d^{1/2} over root{2pi}}
          int_{0}^{infty}
          exppars{-root{c over 2}d
          braces{bracks{t - {1 over t}}^{2} + 2}},{dd t over t^{2}}
          \[1cm] = &
          {2^{1/4}c^{1/4}d^{1/2} over root{2pi}}
          exppars{-droot{2c}} times
          \[2mm] &
          left(int_{0}^{infty}exppars{-root{c over 2}d
          bracks{t - {1 over t}}^{2}}
          ,{dd t over t^{2}}right.
          \[2mm] & +left.
          int_{infty}^{0}exppars{-root{c over 2}d
          bracks{{1 over t} - t}^{2}}
          pars{-1},dd tright)
          \[1cm] = &
          {2^{1/4}c^{1/4}d^{1/2} over root{2pi}}exppars{-droot{2c}}
          times
          \[2mm] &
          int_{0}^{infty}exppars{-root{c over 2}d
          braces{bracks{t - {1 over t}}^{2} + 2}}
          pars{1 + {1 over t^{2}}},dd t
          \[1cm] & stackrel{1/t - t mapsto t}{=},,,
          {2^{1/4}c^{1/4}d^{1/2} over root{2pi}}exppars{-droot{2c}}
          underbrace{int_{-infty}^{infty}exppars{-root{c over 2}dt^{2}},dd t}
          _{ds{2^{1/4}root{pi} over c^{1/4}d^{1/2}}}
          \[5mm] & = bbx{exppars{-droot{2c}}}
          end{align}






          share|cite|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3027074%2fcalculate-integral-with-two-exponential-functions%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2












            $begingroup$

            $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
            newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
            newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
            newcommand{dd}{mathrm{d}}
            newcommand{ds}[1]{displaystyle{#1}}
            newcommand{expo}[1]{,mathrm{e}^{#1},}
            newcommand{ic}{mathrm{i}}
            newcommand{mc}[1]{mathcal{#1}}
            newcommand{mrm}[1]{mathrm{#1}}
            newcommand{pars}[1]{left(,{#1},right)}
            newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
            newcommand{root}[2]{,sqrt[#1]{,{#2},},}
            newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
            newcommand{verts}[1]{leftvert,{#1},rightvert}$

            begin{align}
            &bbox[10px,#ffd]{int_{0}^{infty}expo{-cx}, {d over x^{3/2}root{2pi}},expo{-d^{2}/pars{2x}},dd x}
            \[5mm] = &
            {d over root{2pi}}int_{0}^{infty}x^{-3/2}
            exppars{-root{c over 2}d
            bracks{{root{2c} over d}x + {d over root{2c}}{1 over x} }}
            ,dd x
            end{align}




            Set $ds{x equiv {d over root{2c}}t^{2} =
            2^{-1/2}dc^{-1/2}, t^{2} implies
            dd x = droot{2 over c}t,dd t =
            2^{1/2}dc^{-1/2}t,dd t}$
            :




            begin{align}
            &bbox[10px,#ffd]{int_{0}^{infty}expo{-cx}, {d over x^{3/2}root{2pi}},expo{-d^{2}/pars{2x}},dd x}
            \[5mm] = &
            {d over root{2pi}}int_{0}^{infty}
            bracks{2^{3/4}d^{-3/2}c^{3/4}t^{-3}}
            exppars{-root{c over 2}dbracks{t^{2} + {1 over t^{2}}}},2^{1/2}dc^{-1/2}t,dd t
            \[5mm] = &
            {2^{5/4}c^{1/4}d^{1/2} over root{2pi}}
            int_{0}^{infty}
            exppars{-root{c over 2}d
            braces{bracks{t - {1 over t}}^{2} + 2}},{dd t over t^{2}}
            \[1cm] = &
            {2^{1/4}c^{1/4}d^{1/2} over root{2pi}}
            exppars{-droot{2c}} times
            \[2mm] &
            left(int_{0}^{infty}exppars{-root{c over 2}d
            bracks{t - {1 over t}}^{2}}
            ,{dd t over t^{2}}right.
            \[2mm] & +left.
            int_{infty}^{0}exppars{-root{c over 2}d
            bracks{{1 over t} - t}^{2}}
            pars{-1},dd tright)
            \[1cm] = &
            {2^{1/4}c^{1/4}d^{1/2} over root{2pi}}exppars{-droot{2c}}
            times
            \[2mm] &
            int_{0}^{infty}exppars{-root{c over 2}d
            braces{bracks{t - {1 over t}}^{2} + 2}}
            pars{1 + {1 over t^{2}}},dd t
            \[1cm] & stackrel{1/t - t mapsto t}{=},,,
            {2^{1/4}c^{1/4}d^{1/2} over root{2pi}}exppars{-droot{2c}}
            underbrace{int_{-infty}^{infty}exppars{-root{c over 2}dt^{2}},dd t}
            _{ds{2^{1/4}root{pi} over c^{1/4}d^{1/2}}}
            \[5mm] & = bbx{exppars{-droot{2c}}}
            end{align}






            share|cite|improve this answer











            $endgroup$


















              2












              $begingroup$

              $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
              newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
              newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
              newcommand{dd}{mathrm{d}}
              newcommand{ds}[1]{displaystyle{#1}}
              newcommand{expo}[1]{,mathrm{e}^{#1},}
              newcommand{ic}{mathrm{i}}
              newcommand{mc}[1]{mathcal{#1}}
              newcommand{mrm}[1]{mathrm{#1}}
              newcommand{pars}[1]{left(,{#1},right)}
              newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
              newcommand{root}[2]{,sqrt[#1]{,{#2},},}
              newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
              newcommand{verts}[1]{leftvert,{#1},rightvert}$

              begin{align}
              &bbox[10px,#ffd]{int_{0}^{infty}expo{-cx}, {d over x^{3/2}root{2pi}},expo{-d^{2}/pars{2x}},dd x}
              \[5mm] = &
              {d over root{2pi}}int_{0}^{infty}x^{-3/2}
              exppars{-root{c over 2}d
              bracks{{root{2c} over d}x + {d over root{2c}}{1 over x} }}
              ,dd x
              end{align}




              Set $ds{x equiv {d over root{2c}}t^{2} =
              2^{-1/2}dc^{-1/2}, t^{2} implies
              dd x = droot{2 over c}t,dd t =
              2^{1/2}dc^{-1/2}t,dd t}$
              :




              begin{align}
              &bbox[10px,#ffd]{int_{0}^{infty}expo{-cx}, {d over x^{3/2}root{2pi}},expo{-d^{2}/pars{2x}},dd x}
              \[5mm] = &
              {d over root{2pi}}int_{0}^{infty}
              bracks{2^{3/4}d^{-3/2}c^{3/4}t^{-3}}
              exppars{-root{c over 2}dbracks{t^{2} + {1 over t^{2}}}},2^{1/2}dc^{-1/2}t,dd t
              \[5mm] = &
              {2^{5/4}c^{1/4}d^{1/2} over root{2pi}}
              int_{0}^{infty}
              exppars{-root{c over 2}d
              braces{bracks{t - {1 over t}}^{2} + 2}},{dd t over t^{2}}
              \[1cm] = &
              {2^{1/4}c^{1/4}d^{1/2} over root{2pi}}
              exppars{-droot{2c}} times
              \[2mm] &
              left(int_{0}^{infty}exppars{-root{c over 2}d
              bracks{t - {1 over t}}^{2}}
              ,{dd t over t^{2}}right.
              \[2mm] & +left.
              int_{infty}^{0}exppars{-root{c over 2}d
              bracks{{1 over t} - t}^{2}}
              pars{-1},dd tright)
              \[1cm] = &
              {2^{1/4}c^{1/4}d^{1/2} over root{2pi}}exppars{-droot{2c}}
              times
              \[2mm] &
              int_{0}^{infty}exppars{-root{c over 2}d
              braces{bracks{t - {1 over t}}^{2} + 2}}
              pars{1 + {1 over t^{2}}},dd t
              \[1cm] & stackrel{1/t - t mapsto t}{=},,,
              {2^{1/4}c^{1/4}d^{1/2} over root{2pi}}exppars{-droot{2c}}
              underbrace{int_{-infty}^{infty}exppars{-root{c over 2}dt^{2}},dd t}
              _{ds{2^{1/4}root{pi} over c^{1/4}d^{1/2}}}
              \[5mm] & = bbx{exppars{-droot{2c}}}
              end{align}






              share|cite|improve this answer











              $endgroup$
















                2












                2








                2





                $begingroup$

                $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
                newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
                newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
                newcommand{dd}{mathrm{d}}
                newcommand{ds}[1]{displaystyle{#1}}
                newcommand{expo}[1]{,mathrm{e}^{#1},}
                newcommand{ic}{mathrm{i}}
                newcommand{mc}[1]{mathcal{#1}}
                newcommand{mrm}[1]{mathrm{#1}}
                newcommand{pars}[1]{left(,{#1},right)}
                newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
                newcommand{root}[2]{,sqrt[#1]{,{#2},},}
                newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
                newcommand{verts}[1]{leftvert,{#1},rightvert}$

                begin{align}
                &bbox[10px,#ffd]{int_{0}^{infty}expo{-cx}, {d over x^{3/2}root{2pi}},expo{-d^{2}/pars{2x}},dd x}
                \[5mm] = &
                {d over root{2pi}}int_{0}^{infty}x^{-3/2}
                exppars{-root{c over 2}d
                bracks{{root{2c} over d}x + {d over root{2c}}{1 over x} }}
                ,dd x
                end{align}




                Set $ds{x equiv {d over root{2c}}t^{2} =
                2^{-1/2}dc^{-1/2}, t^{2} implies
                dd x = droot{2 over c}t,dd t =
                2^{1/2}dc^{-1/2}t,dd t}$
                :




                begin{align}
                &bbox[10px,#ffd]{int_{0}^{infty}expo{-cx}, {d over x^{3/2}root{2pi}},expo{-d^{2}/pars{2x}},dd x}
                \[5mm] = &
                {d over root{2pi}}int_{0}^{infty}
                bracks{2^{3/4}d^{-3/2}c^{3/4}t^{-3}}
                exppars{-root{c over 2}dbracks{t^{2} + {1 over t^{2}}}},2^{1/2}dc^{-1/2}t,dd t
                \[5mm] = &
                {2^{5/4}c^{1/4}d^{1/2} over root{2pi}}
                int_{0}^{infty}
                exppars{-root{c over 2}d
                braces{bracks{t - {1 over t}}^{2} + 2}},{dd t over t^{2}}
                \[1cm] = &
                {2^{1/4}c^{1/4}d^{1/2} over root{2pi}}
                exppars{-droot{2c}} times
                \[2mm] &
                left(int_{0}^{infty}exppars{-root{c over 2}d
                bracks{t - {1 over t}}^{2}}
                ,{dd t over t^{2}}right.
                \[2mm] & +left.
                int_{infty}^{0}exppars{-root{c over 2}d
                bracks{{1 over t} - t}^{2}}
                pars{-1},dd tright)
                \[1cm] = &
                {2^{1/4}c^{1/4}d^{1/2} over root{2pi}}exppars{-droot{2c}}
                times
                \[2mm] &
                int_{0}^{infty}exppars{-root{c over 2}d
                braces{bracks{t - {1 over t}}^{2} + 2}}
                pars{1 + {1 over t^{2}}},dd t
                \[1cm] & stackrel{1/t - t mapsto t}{=},,,
                {2^{1/4}c^{1/4}d^{1/2} over root{2pi}}exppars{-droot{2c}}
                underbrace{int_{-infty}^{infty}exppars{-root{c over 2}dt^{2}},dd t}
                _{ds{2^{1/4}root{pi} over c^{1/4}d^{1/2}}}
                \[5mm] & = bbx{exppars{-droot{2c}}}
                end{align}






                share|cite|improve this answer











                $endgroup$



                $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
                newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
                newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
                newcommand{dd}{mathrm{d}}
                newcommand{ds}[1]{displaystyle{#1}}
                newcommand{expo}[1]{,mathrm{e}^{#1},}
                newcommand{ic}{mathrm{i}}
                newcommand{mc}[1]{mathcal{#1}}
                newcommand{mrm}[1]{mathrm{#1}}
                newcommand{pars}[1]{left(,{#1},right)}
                newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
                newcommand{root}[2]{,sqrt[#1]{,{#2},},}
                newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
                newcommand{verts}[1]{leftvert,{#1},rightvert}$

                begin{align}
                &bbox[10px,#ffd]{int_{0}^{infty}expo{-cx}, {d over x^{3/2}root{2pi}},expo{-d^{2}/pars{2x}},dd x}
                \[5mm] = &
                {d over root{2pi}}int_{0}^{infty}x^{-3/2}
                exppars{-root{c over 2}d
                bracks{{root{2c} over d}x + {d over root{2c}}{1 over x} }}
                ,dd x
                end{align}




                Set $ds{x equiv {d over root{2c}}t^{2} =
                2^{-1/2}dc^{-1/2}, t^{2} implies
                dd x = droot{2 over c}t,dd t =
                2^{1/2}dc^{-1/2}t,dd t}$
                :




                begin{align}
                &bbox[10px,#ffd]{int_{0}^{infty}expo{-cx}, {d over x^{3/2}root{2pi}},expo{-d^{2}/pars{2x}},dd x}
                \[5mm] = &
                {d over root{2pi}}int_{0}^{infty}
                bracks{2^{3/4}d^{-3/2}c^{3/4}t^{-3}}
                exppars{-root{c over 2}dbracks{t^{2} + {1 over t^{2}}}},2^{1/2}dc^{-1/2}t,dd t
                \[5mm] = &
                {2^{5/4}c^{1/4}d^{1/2} over root{2pi}}
                int_{0}^{infty}
                exppars{-root{c over 2}d
                braces{bracks{t - {1 over t}}^{2} + 2}},{dd t over t^{2}}
                \[1cm] = &
                {2^{1/4}c^{1/4}d^{1/2} over root{2pi}}
                exppars{-droot{2c}} times
                \[2mm] &
                left(int_{0}^{infty}exppars{-root{c over 2}d
                bracks{t - {1 over t}}^{2}}
                ,{dd t over t^{2}}right.
                \[2mm] & +left.
                int_{infty}^{0}exppars{-root{c over 2}d
                bracks{{1 over t} - t}^{2}}
                pars{-1},dd tright)
                \[1cm] = &
                {2^{1/4}c^{1/4}d^{1/2} over root{2pi}}exppars{-droot{2c}}
                times
                \[2mm] &
                int_{0}^{infty}exppars{-root{c over 2}d
                braces{bracks{t - {1 over t}}^{2} + 2}}
                pars{1 + {1 over t^{2}}},dd t
                \[1cm] & stackrel{1/t - t mapsto t}{=},,,
                {2^{1/4}c^{1/4}d^{1/2} over root{2pi}}exppars{-droot{2c}}
                underbrace{int_{-infty}^{infty}exppars{-root{c over 2}dt^{2}},dd t}
                _{ds{2^{1/4}root{pi} over c^{1/4}d^{1/2}}}
                \[5mm] & = bbx{exppars{-droot{2c}}}
                end{align}







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Dec 6 '18 at 0:44

























                answered Dec 5 '18 at 23:22









                Felix MarinFelix Marin

                67.5k7107141




                67.5k7107141






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3027074%2fcalculate-integral-with-two-exponential-functions%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Aardman Animations

                    Are they similar matrix

                    “minimization” problem in Euclidean space related to orthonormal basis