Infinite Series $1+frac12-frac23+frac14+frac15-frac26+cdots$
up vote
6
down vote
favorite
Was given the following infinite sum in class as a question, while we were talking about Taylor series expansions of $ln(1+x)$ and $arctan(x)$:
$$1+frac12-frac23+frac14+frac15-frac26+cdots$$
The question isn't homework or anything, just a thought tease.
I tried for a long while but couldn't find anything remotely close.
Thanks in advance for the help.
calculus real-analysis sequences-and-series summation closed-form
add a comment |
up vote
6
down vote
favorite
Was given the following infinite sum in class as a question, while we were talking about Taylor series expansions of $ln(1+x)$ and $arctan(x)$:
$$1+frac12-frac23+frac14+frac15-frac26+cdots$$
The question isn't homework or anything, just a thought tease.
I tried for a long while but couldn't find anything remotely close.
Thanks in advance for the help.
calculus real-analysis sequences-and-series summation closed-form
3
The partial sum of the first $3n$ terms are $H_{3n} - H_{n}$ where $H_n$ is the $n^{th}$ harmonic number, so the answer is $log 3$.
– achille hui
Jan 30 '14 at 13:58
A comment to sequence 1,1,-2,1,1,-2,... oeis.org/A061347 includes the generalization to log(n). See also math.stackexchange.com/questions/46378/… and math.stackexchange.com/questions/883348/series-for-logarithms
– Jaume Oliver Lafont
Jan 12 '16 at 22:20
add a comment |
up vote
6
down vote
favorite
up vote
6
down vote
favorite
Was given the following infinite sum in class as a question, while we were talking about Taylor series expansions of $ln(1+x)$ and $arctan(x)$:
$$1+frac12-frac23+frac14+frac15-frac26+cdots$$
The question isn't homework or anything, just a thought tease.
I tried for a long while but couldn't find anything remotely close.
Thanks in advance for the help.
calculus real-analysis sequences-and-series summation closed-form
Was given the following infinite sum in class as a question, while we were talking about Taylor series expansions of $ln(1+x)$ and $arctan(x)$:
$$1+frac12-frac23+frac14+frac15-frac26+cdots$$
The question isn't homework or anything, just a thought tease.
I tried for a long while but couldn't find anything remotely close.
Thanks in advance for the help.
calculus real-analysis sequences-and-series summation closed-form
calculus real-analysis sequences-and-series summation closed-form
edited Jul 16 '15 at 8:49
user91500
1
1
asked Jan 30 '14 at 13:45
Trouble
312
312
3
The partial sum of the first $3n$ terms are $H_{3n} - H_{n}$ where $H_n$ is the $n^{th}$ harmonic number, so the answer is $log 3$.
– achille hui
Jan 30 '14 at 13:58
A comment to sequence 1,1,-2,1,1,-2,... oeis.org/A061347 includes the generalization to log(n). See also math.stackexchange.com/questions/46378/… and math.stackexchange.com/questions/883348/series-for-logarithms
– Jaume Oliver Lafont
Jan 12 '16 at 22:20
add a comment |
3
The partial sum of the first $3n$ terms are $H_{3n} - H_{n}$ where $H_n$ is the $n^{th}$ harmonic number, so the answer is $log 3$.
– achille hui
Jan 30 '14 at 13:58
A comment to sequence 1,1,-2,1,1,-2,... oeis.org/A061347 includes the generalization to log(n). See also math.stackexchange.com/questions/46378/… and math.stackexchange.com/questions/883348/series-for-logarithms
– Jaume Oliver Lafont
Jan 12 '16 at 22:20
3
3
The partial sum of the first $3n$ terms are $H_{3n} - H_{n}$ where $H_n$ is the $n^{th}$ harmonic number, so the answer is $log 3$.
– achille hui
Jan 30 '14 at 13:58
The partial sum of the first $3n$ terms are $H_{3n} - H_{n}$ where $H_n$ is the $n^{th}$ harmonic number, so the answer is $log 3$.
– achille hui
Jan 30 '14 at 13:58
A comment to sequence 1,1,-2,1,1,-2,... oeis.org/A061347 includes the generalization to log(n). See also math.stackexchange.com/questions/46378/… and math.stackexchange.com/questions/883348/series-for-logarithms
– Jaume Oliver Lafont
Jan 12 '16 at 22:20
A comment to sequence 1,1,-2,1,1,-2,... oeis.org/A061347 includes the generalization to log(n). See also math.stackexchange.com/questions/46378/… and math.stackexchange.com/questions/883348/series-for-logarithms
– Jaume Oliver Lafont
Jan 12 '16 at 22:20
add a comment |
5 Answers
5
active
oldest
votes
up vote
7
down vote
Rewrite $-frac23$ as $frac13-1$, $-frac26$ as $frac16-frac12$, and in general, $-frac{2}{3n}$ as $frac1{3n}-frac1n$. Then the sum to $3n$ terms is:
$$1 + frac12 + frac13 + frac14 + cdots + frac1{3n} - left(1 + frac12 + frac13 + frac14 + cdots + frac1nright) = sum_{r=n+1}^{3n}frac1r$$
This tends to
$$int_n^{3n}frac{dx}x = log 3$$
as $n toinfty$.
add a comment |
up vote
6
down vote
Since
$$lim_{ntoinfty}left(1+frac1 2+frac1 3+frac1 4+frac1 5+frac1 6+...+frac1 n-log(n)right)=gamma$$
($gamma$ is Euler constant, for more information see here.)
we see that
$$gamma=lim_{ntoinfty}left(color{red}{1}+color{red}{frac1 2}+color{#0000ff}{frac1 3}+color{red}{frac1 4}+color{red}{frac1 5}+color{#0000ff}{frac1 6}+...+color{red}{frac1 {3n-2}}+color{red}{frac1 {3n-1}}+color{#0000ff}{frac1 {3n}}-log(3n)right)$$
and
$$gamma=lim_{ntoinfty}color{#0000ff}{3left(frac1 3+frac1 6+...+frac1 {3n}right)}-log(n)$$
Subtracting, we obtain
$$0=lim_{ntoinfty}left(1+frac1 2-frac2 3+frac1 4+frac1 5-frac2 6++-...+frac1{3n-2}+frac1{3n-1}-frac2 {3n}right)-log(3)$$
which implies that
$$1 + frac12 - frac23 + frac14 + frac15 - frac26 + ...=log(3)$$
add a comment |
up vote
4
down vote
This is a direct proof using $$int_0^1 x^n dx= frac{1}{n+1},$$ the sum of a geometric progression and integral evaluation.
$$begin{align}
S&=sum_{k=0}^infty left(frac{1}{3k+1}+frac{1}{3k+2}-frac{2}{3k+3}right)\
&=sum_{k=0}^infty int_0^1 left(x^{3k}+x^{3k+1}-2x^{3k+2}right)dx\
&=int_0^1 sum_{k=0}^infty left(x^{3k}+x^{3k+1}-2x^{3k+2}right)dx\
&=int_0^1 frac{1+x-2x^2}{1-x^3}dx\
&=int_0^1 frac{1+2x}{1+x+x^2}dx\
&=log(1+x+x^2)|_{0}^1\
&=log(3)
end{align}$$
Thus, similarly to
$$log(1+x)=1-frac{1}{2}x+frac{1}{3}x^2-frac{1}{4}x^3...$$
we have
$$log(1+x+x^2)=1+frac{1}{2}x-frac{2}{3}x^2+frac{1}{4}x^3+frac{1}{5}x^4-frac{2}{6}x^5+...$$
Moreover, the pattern generalizes.
add a comment |
up vote
3
down vote
Alternatively, note that
$$S:=1+frac{1}{2}-frac{2}{3}+frac{1}{4}+frac{1}{5}-frac{2}{6}+ldots=sum_{k=1}^infty,frac{-omega^{k}-bar{omega}^{k}}{k},,$$
where
$$omega:=expleft(+frac{2pitext{i}}{3}right)=frac{-1+sqrt{3}text{i}}{2},,text{ so }bar{omega}=expleft(-frac{2pitext{i}}{3}right)=frac{-1-sqrt{3}text{i}}{2},.$$
Since the logarithmic power series $ln(1-z)=displaystyle- sum_{k=1}^infty,frac{z^k}{k}$ converges for all $zinmathbb{C}setminus{1}$ such that $|z|leq 1$, we get
$$S=ln(1-omega)+ln(1-bar{omega})=left(frac{1}{2},ln(3)-text{i},frac{pi}{6}right)+left(frac{1}{2},ln(3)+text{i},frac{pi}{6}right),,$$
making $S=ln(3)$.
add a comment |
up vote
2
down vote
As every third term is "annoying", let us restore a know pattern,
$$S:=1+frac12-frac23+frac14+frac15-frac26+cdots=left(1+frac12+frac13+frac14+frac15+frac16+cdotsright)-left(frac33+frac36cdotsright).$$
It is tempting to simplify and deduce
$$S=left(1+frac12+frac13+frac14+frac15+frac16+cdotsright)-left(1+frac12cdotsright)=color{red}{0},$$
but this would be wrong as the sum is not absolutely summable and changing the order of the terms is not allowed.
The right way (given by others) is by evaluating the partial sums with
$$S_{3n}=H_{3n}-H_n$$whicht tends to$$(ln(3n)-gamma)-(ln(n)-gamma)=color{green}{ln(3)}.$$
The reason why the simplification doesn't work is that the terms of the second series are more "sparse". In the partial sum approach, the sparsity is respected.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f657241%2finfinite-series-1-frac12-frac23-frac14-frac15-frac26-cdots%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
5 Answers
5
active
oldest
votes
5 Answers
5
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
7
down vote
Rewrite $-frac23$ as $frac13-1$, $-frac26$ as $frac16-frac12$, and in general, $-frac{2}{3n}$ as $frac1{3n}-frac1n$. Then the sum to $3n$ terms is:
$$1 + frac12 + frac13 + frac14 + cdots + frac1{3n} - left(1 + frac12 + frac13 + frac14 + cdots + frac1nright) = sum_{r=n+1}^{3n}frac1r$$
This tends to
$$int_n^{3n}frac{dx}x = log 3$$
as $n toinfty$.
add a comment |
up vote
7
down vote
Rewrite $-frac23$ as $frac13-1$, $-frac26$ as $frac16-frac12$, and in general, $-frac{2}{3n}$ as $frac1{3n}-frac1n$. Then the sum to $3n$ terms is:
$$1 + frac12 + frac13 + frac14 + cdots + frac1{3n} - left(1 + frac12 + frac13 + frac14 + cdots + frac1nright) = sum_{r=n+1}^{3n}frac1r$$
This tends to
$$int_n^{3n}frac{dx}x = log 3$$
as $n toinfty$.
add a comment |
up vote
7
down vote
up vote
7
down vote
Rewrite $-frac23$ as $frac13-1$, $-frac26$ as $frac16-frac12$, and in general, $-frac{2}{3n}$ as $frac1{3n}-frac1n$. Then the sum to $3n$ terms is:
$$1 + frac12 + frac13 + frac14 + cdots + frac1{3n} - left(1 + frac12 + frac13 + frac14 + cdots + frac1nright) = sum_{r=n+1}^{3n}frac1r$$
This tends to
$$int_n^{3n}frac{dx}x = log 3$$
as $n toinfty$.
Rewrite $-frac23$ as $frac13-1$, $-frac26$ as $frac16-frac12$, and in general, $-frac{2}{3n}$ as $frac1{3n}-frac1n$. Then the sum to $3n$ terms is:
$$1 + frac12 + frac13 + frac14 + cdots + frac1{3n} - left(1 + frac12 + frac13 + frac14 + cdots + frac1nright) = sum_{r=n+1}^{3n}frac1r$$
This tends to
$$int_n^{3n}frac{dx}x = log 3$$
as $n toinfty$.
edited Jan 30 '14 at 14:17
user93957
answered Jan 30 '14 at 13:59
TonyK
41.2k353131
41.2k353131
add a comment |
add a comment |
up vote
6
down vote
Since
$$lim_{ntoinfty}left(1+frac1 2+frac1 3+frac1 4+frac1 5+frac1 6+...+frac1 n-log(n)right)=gamma$$
($gamma$ is Euler constant, for more information see here.)
we see that
$$gamma=lim_{ntoinfty}left(color{red}{1}+color{red}{frac1 2}+color{#0000ff}{frac1 3}+color{red}{frac1 4}+color{red}{frac1 5}+color{#0000ff}{frac1 6}+...+color{red}{frac1 {3n-2}}+color{red}{frac1 {3n-1}}+color{#0000ff}{frac1 {3n}}-log(3n)right)$$
and
$$gamma=lim_{ntoinfty}color{#0000ff}{3left(frac1 3+frac1 6+...+frac1 {3n}right)}-log(n)$$
Subtracting, we obtain
$$0=lim_{ntoinfty}left(1+frac1 2-frac2 3+frac1 4+frac1 5-frac2 6++-...+frac1{3n-2}+frac1{3n-1}-frac2 {3n}right)-log(3)$$
which implies that
$$1 + frac12 - frac23 + frac14 + frac15 - frac26 + ...=log(3)$$
add a comment |
up vote
6
down vote
Since
$$lim_{ntoinfty}left(1+frac1 2+frac1 3+frac1 4+frac1 5+frac1 6+...+frac1 n-log(n)right)=gamma$$
($gamma$ is Euler constant, for more information see here.)
we see that
$$gamma=lim_{ntoinfty}left(color{red}{1}+color{red}{frac1 2}+color{#0000ff}{frac1 3}+color{red}{frac1 4}+color{red}{frac1 5}+color{#0000ff}{frac1 6}+...+color{red}{frac1 {3n-2}}+color{red}{frac1 {3n-1}}+color{#0000ff}{frac1 {3n}}-log(3n)right)$$
and
$$gamma=lim_{ntoinfty}color{#0000ff}{3left(frac1 3+frac1 6+...+frac1 {3n}right)}-log(n)$$
Subtracting, we obtain
$$0=lim_{ntoinfty}left(1+frac1 2-frac2 3+frac1 4+frac1 5-frac2 6++-...+frac1{3n-2}+frac1{3n-1}-frac2 {3n}right)-log(3)$$
which implies that
$$1 + frac12 - frac23 + frac14 + frac15 - frac26 + ...=log(3)$$
add a comment |
up vote
6
down vote
up vote
6
down vote
Since
$$lim_{ntoinfty}left(1+frac1 2+frac1 3+frac1 4+frac1 5+frac1 6+...+frac1 n-log(n)right)=gamma$$
($gamma$ is Euler constant, for more information see here.)
we see that
$$gamma=lim_{ntoinfty}left(color{red}{1}+color{red}{frac1 2}+color{#0000ff}{frac1 3}+color{red}{frac1 4}+color{red}{frac1 5}+color{#0000ff}{frac1 6}+...+color{red}{frac1 {3n-2}}+color{red}{frac1 {3n-1}}+color{#0000ff}{frac1 {3n}}-log(3n)right)$$
and
$$gamma=lim_{ntoinfty}color{#0000ff}{3left(frac1 3+frac1 6+...+frac1 {3n}right)}-log(n)$$
Subtracting, we obtain
$$0=lim_{ntoinfty}left(1+frac1 2-frac2 3+frac1 4+frac1 5-frac2 6++-...+frac1{3n-2}+frac1{3n-1}-frac2 {3n}right)-log(3)$$
which implies that
$$1 + frac12 - frac23 + frac14 + frac15 - frac26 + ...=log(3)$$
Since
$$lim_{ntoinfty}left(1+frac1 2+frac1 3+frac1 4+frac1 5+frac1 6+...+frac1 n-log(n)right)=gamma$$
($gamma$ is Euler constant, for more information see here.)
we see that
$$gamma=lim_{ntoinfty}left(color{red}{1}+color{red}{frac1 2}+color{#0000ff}{frac1 3}+color{red}{frac1 4}+color{red}{frac1 5}+color{#0000ff}{frac1 6}+...+color{red}{frac1 {3n-2}}+color{red}{frac1 {3n-1}}+color{#0000ff}{frac1 {3n}}-log(3n)right)$$
and
$$gamma=lim_{ntoinfty}color{#0000ff}{3left(frac1 3+frac1 6+...+frac1 {3n}right)}-log(n)$$
Subtracting, we obtain
$$0=lim_{ntoinfty}left(1+frac1 2-frac2 3+frac1 4+frac1 5-frac2 6++-...+frac1{3n-2}+frac1{3n-1}-frac2 {3n}right)-log(3)$$
which implies that
$$1 + frac12 - frac23 + frac14 + frac15 - frac26 + ...=log(3)$$
edited Jan 30 '14 at 17:33
answered Jan 30 '14 at 14:25
user91500
1
1
add a comment |
add a comment |
up vote
4
down vote
This is a direct proof using $$int_0^1 x^n dx= frac{1}{n+1},$$ the sum of a geometric progression and integral evaluation.
$$begin{align}
S&=sum_{k=0}^infty left(frac{1}{3k+1}+frac{1}{3k+2}-frac{2}{3k+3}right)\
&=sum_{k=0}^infty int_0^1 left(x^{3k}+x^{3k+1}-2x^{3k+2}right)dx\
&=int_0^1 sum_{k=0}^infty left(x^{3k}+x^{3k+1}-2x^{3k+2}right)dx\
&=int_0^1 frac{1+x-2x^2}{1-x^3}dx\
&=int_0^1 frac{1+2x}{1+x+x^2}dx\
&=log(1+x+x^2)|_{0}^1\
&=log(3)
end{align}$$
Thus, similarly to
$$log(1+x)=1-frac{1}{2}x+frac{1}{3}x^2-frac{1}{4}x^3...$$
we have
$$log(1+x+x^2)=1+frac{1}{2}x-frac{2}{3}x^2+frac{1}{4}x^3+frac{1}{5}x^4-frac{2}{6}x^5+...$$
Moreover, the pattern generalizes.
add a comment |
up vote
4
down vote
This is a direct proof using $$int_0^1 x^n dx= frac{1}{n+1},$$ the sum of a geometric progression and integral evaluation.
$$begin{align}
S&=sum_{k=0}^infty left(frac{1}{3k+1}+frac{1}{3k+2}-frac{2}{3k+3}right)\
&=sum_{k=0}^infty int_0^1 left(x^{3k}+x^{3k+1}-2x^{3k+2}right)dx\
&=int_0^1 sum_{k=0}^infty left(x^{3k}+x^{3k+1}-2x^{3k+2}right)dx\
&=int_0^1 frac{1+x-2x^2}{1-x^3}dx\
&=int_0^1 frac{1+2x}{1+x+x^2}dx\
&=log(1+x+x^2)|_{0}^1\
&=log(3)
end{align}$$
Thus, similarly to
$$log(1+x)=1-frac{1}{2}x+frac{1}{3}x^2-frac{1}{4}x^3...$$
we have
$$log(1+x+x^2)=1+frac{1}{2}x-frac{2}{3}x^2+frac{1}{4}x^3+frac{1}{5}x^4-frac{2}{6}x^5+...$$
Moreover, the pattern generalizes.
add a comment |
up vote
4
down vote
up vote
4
down vote
This is a direct proof using $$int_0^1 x^n dx= frac{1}{n+1},$$ the sum of a geometric progression and integral evaluation.
$$begin{align}
S&=sum_{k=0}^infty left(frac{1}{3k+1}+frac{1}{3k+2}-frac{2}{3k+3}right)\
&=sum_{k=0}^infty int_0^1 left(x^{3k}+x^{3k+1}-2x^{3k+2}right)dx\
&=int_0^1 sum_{k=0}^infty left(x^{3k}+x^{3k+1}-2x^{3k+2}right)dx\
&=int_0^1 frac{1+x-2x^2}{1-x^3}dx\
&=int_0^1 frac{1+2x}{1+x+x^2}dx\
&=log(1+x+x^2)|_{0}^1\
&=log(3)
end{align}$$
Thus, similarly to
$$log(1+x)=1-frac{1}{2}x+frac{1}{3}x^2-frac{1}{4}x^3...$$
we have
$$log(1+x+x^2)=1+frac{1}{2}x-frac{2}{3}x^2+frac{1}{4}x^3+frac{1}{5}x^4-frac{2}{6}x^5+...$$
Moreover, the pattern generalizes.
This is a direct proof using $$int_0^1 x^n dx= frac{1}{n+1},$$ the sum of a geometric progression and integral evaluation.
$$begin{align}
S&=sum_{k=0}^infty left(frac{1}{3k+1}+frac{1}{3k+2}-frac{2}{3k+3}right)\
&=sum_{k=0}^infty int_0^1 left(x^{3k}+x^{3k+1}-2x^{3k+2}right)dx\
&=int_0^1 sum_{k=0}^infty left(x^{3k}+x^{3k+1}-2x^{3k+2}right)dx\
&=int_0^1 frac{1+x-2x^2}{1-x^3}dx\
&=int_0^1 frac{1+2x}{1+x+x^2}dx\
&=log(1+x+x^2)|_{0}^1\
&=log(3)
end{align}$$
Thus, similarly to
$$log(1+x)=1-frac{1}{2}x+frac{1}{3}x^2-frac{1}{4}x^3...$$
we have
$$log(1+x+x^2)=1+frac{1}{2}x-frac{2}{3}x^2+frac{1}{4}x^3+frac{1}{5}x^4-frac{2}{6}x^5+...$$
Moreover, the pattern generalizes.
answered May 12 '17 at 11:26
Jaume Oliver Lafont
3,04411033
3,04411033
add a comment |
add a comment |
up vote
3
down vote
Alternatively, note that
$$S:=1+frac{1}{2}-frac{2}{3}+frac{1}{4}+frac{1}{5}-frac{2}{6}+ldots=sum_{k=1}^infty,frac{-omega^{k}-bar{omega}^{k}}{k},,$$
where
$$omega:=expleft(+frac{2pitext{i}}{3}right)=frac{-1+sqrt{3}text{i}}{2},,text{ so }bar{omega}=expleft(-frac{2pitext{i}}{3}right)=frac{-1-sqrt{3}text{i}}{2},.$$
Since the logarithmic power series $ln(1-z)=displaystyle- sum_{k=1}^infty,frac{z^k}{k}$ converges for all $zinmathbb{C}setminus{1}$ such that $|z|leq 1$, we get
$$S=ln(1-omega)+ln(1-bar{omega})=left(frac{1}{2},ln(3)-text{i},frac{pi}{6}right)+left(frac{1}{2},ln(3)+text{i},frac{pi}{6}right),,$$
making $S=ln(3)$.
add a comment |
up vote
3
down vote
Alternatively, note that
$$S:=1+frac{1}{2}-frac{2}{3}+frac{1}{4}+frac{1}{5}-frac{2}{6}+ldots=sum_{k=1}^infty,frac{-omega^{k}-bar{omega}^{k}}{k},,$$
where
$$omega:=expleft(+frac{2pitext{i}}{3}right)=frac{-1+sqrt{3}text{i}}{2},,text{ so }bar{omega}=expleft(-frac{2pitext{i}}{3}right)=frac{-1-sqrt{3}text{i}}{2},.$$
Since the logarithmic power series $ln(1-z)=displaystyle- sum_{k=1}^infty,frac{z^k}{k}$ converges for all $zinmathbb{C}setminus{1}$ such that $|z|leq 1$, we get
$$S=ln(1-omega)+ln(1-bar{omega})=left(frac{1}{2},ln(3)-text{i},frac{pi}{6}right)+left(frac{1}{2},ln(3)+text{i},frac{pi}{6}right),,$$
making $S=ln(3)$.
add a comment |
up vote
3
down vote
up vote
3
down vote
Alternatively, note that
$$S:=1+frac{1}{2}-frac{2}{3}+frac{1}{4}+frac{1}{5}-frac{2}{6}+ldots=sum_{k=1}^infty,frac{-omega^{k}-bar{omega}^{k}}{k},,$$
where
$$omega:=expleft(+frac{2pitext{i}}{3}right)=frac{-1+sqrt{3}text{i}}{2},,text{ so }bar{omega}=expleft(-frac{2pitext{i}}{3}right)=frac{-1-sqrt{3}text{i}}{2},.$$
Since the logarithmic power series $ln(1-z)=displaystyle- sum_{k=1}^infty,frac{z^k}{k}$ converges for all $zinmathbb{C}setminus{1}$ such that $|z|leq 1$, we get
$$S=ln(1-omega)+ln(1-bar{omega})=left(frac{1}{2},ln(3)-text{i},frac{pi}{6}right)+left(frac{1}{2},ln(3)+text{i},frac{pi}{6}right),,$$
making $S=ln(3)$.
Alternatively, note that
$$S:=1+frac{1}{2}-frac{2}{3}+frac{1}{4}+frac{1}{5}-frac{2}{6}+ldots=sum_{k=1}^infty,frac{-omega^{k}-bar{omega}^{k}}{k},,$$
where
$$omega:=expleft(+frac{2pitext{i}}{3}right)=frac{-1+sqrt{3}text{i}}{2},,text{ so }bar{omega}=expleft(-frac{2pitext{i}}{3}right)=frac{-1-sqrt{3}text{i}}{2},.$$
Since the logarithmic power series $ln(1-z)=displaystyle- sum_{k=1}^infty,frac{z^k}{k}$ converges for all $zinmathbb{C}setminus{1}$ such that $|z|leq 1$, we get
$$S=ln(1-omega)+ln(1-bar{omega})=left(frac{1}{2},ln(3)-text{i},frac{pi}{6}right)+left(frac{1}{2},ln(3)+text{i},frac{pi}{6}right),,$$
making $S=ln(3)$.
edited Nov 22 at 18:31
answered Sep 14 at 14:54
Batominovski
33.4k33292
33.4k33292
add a comment |
add a comment |
up vote
2
down vote
As every third term is "annoying", let us restore a know pattern,
$$S:=1+frac12-frac23+frac14+frac15-frac26+cdots=left(1+frac12+frac13+frac14+frac15+frac16+cdotsright)-left(frac33+frac36cdotsright).$$
It is tempting to simplify and deduce
$$S=left(1+frac12+frac13+frac14+frac15+frac16+cdotsright)-left(1+frac12cdotsright)=color{red}{0},$$
but this would be wrong as the sum is not absolutely summable and changing the order of the terms is not allowed.
The right way (given by others) is by evaluating the partial sums with
$$S_{3n}=H_{3n}-H_n$$whicht tends to$$(ln(3n)-gamma)-(ln(n)-gamma)=color{green}{ln(3)}.$$
The reason why the simplification doesn't work is that the terms of the second series are more "sparse". In the partial sum approach, the sparsity is respected.
add a comment |
up vote
2
down vote
As every third term is "annoying", let us restore a know pattern,
$$S:=1+frac12-frac23+frac14+frac15-frac26+cdots=left(1+frac12+frac13+frac14+frac15+frac16+cdotsright)-left(frac33+frac36cdotsright).$$
It is tempting to simplify and deduce
$$S=left(1+frac12+frac13+frac14+frac15+frac16+cdotsright)-left(1+frac12cdotsright)=color{red}{0},$$
but this would be wrong as the sum is not absolutely summable and changing the order of the terms is not allowed.
The right way (given by others) is by evaluating the partial sums with
$$S_{3n}=H_{3n}-H_n$$whicht tends to$$(ln(3n)-gamma)-(ln(n)-gamma)=color{green}{ln(3)}.$$
The reason why the simplification doesn't work is that the terms of the second series are more "sparse". In the partial sum approach, the sparsity is respected.
add a comment |
up vote
2
down vote
up vote
2
down vote
As every third term is "annoying", let us restore a know pattern,
$$S:=1+frac12-frac23+frac14+frac15-frac26+cdots=left(1+frac12+frac13+frac14+frac15+frac16+cdotsright)-left(frac33+frac36cdotsright).$$
It is tempting to simplify and deduce
$$S=left(1+frac12+frac13+frac14+frac15+frac16+cdotsright)-left(1+frac12cdotsright)=color{red}{0},$$
but this would be wrong as the sum is not absolutely summable and changing the order of the terms is not allowed.
The right way (given by others) is by evaluating the partial sums with
$$S_{3n}=H_{3n}-H_n$$whicht tends to$$(ln(3n)-gamma)-(ln(n)-gamma)=color{green}{ln(3)}.$$
The reason why the simplification doesn't work is that the terms of the second series are more "sparse". In the partial sum approach, the sparsity is respected.
As every third term is "annoying", let us restore a know pattern,
$$S:=1+frac12-frac23+frac14+frac15-frac26+cdots=left(1+frac12+frac13+frac14+frac15+frac16+cdotsright)-left(frac33+frac36cdotsright).$$
It is tempting to simplify and deduce
$$S=left(1+frac12+frac13+frac14+frac15+frac16+cdotsright)-left(1+frac12cdotsright)=color{red}{0},$$
but this would be wrong as the sum is not absolutely summable and changing the order of the terms is not allowed.
The right way (given by others) is by evaluating the partial sums with
$$S_{3n}=H_{3n}-H_n$$whicht tends to$$(ln(3n)-gamma)-(ln(n)-gamma)=color{green}{ln(3)}.$$
The reason why the simplification doesn't work is that the terms of the second series are more "sparse". In the partial sum approach, the sparsity is respected.
edited Sep 14 at 13:54
answered Jul 16 '15 at 9:11
Yves Daoust
123k668219
123k668219
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f657241%2finfinite-series-1-frac12-frac23-frac14-frac15-frac26-cdots%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
3
The partial sum of the first $3n$ terms are $H_{3n} - H_{n}$ where $H_n$ is the $n^{th}$ harmonic number, so the answer is $log 3$.
– achille hui
Jan 30 '14 at 13:58
A comment to sequence 1,1,-2,1,1,-2,... oeis.org/A061347 includes the generalization to log(n). See also math.stackexchange.com/questions/46378/… and math.stackexchange.com/questions/883348/series-for-logarithms
– Jaume Oliver Lafont
Jan 12 '16 at 22:20