Decomposing a positive semi-definite matrix with all -1,+1 elements
up vote
2
down vote
favorite
Claim.$,$ A matrix $,X in {-1,1}^{ntimes n},$ is positive semi-definite if and only if it is of the form $X= xx^{T}$, for some $x in {-1,1 }^n$.
How can I prove this? Proving the 'if' part is easy since $y^Txx^Ty = (x^Ty)^T(x^Ty) geq 0$ for any $y in mathbb{R}^n$. But, the other way around is not that straightforward.
Notice that, $X$ has all ones diagonal since diagonal of a psd matrix cannot have negative elements.
linear-algebra matrices matrix-calculus symmetric-matrices positive-semidefinite
add a comment |
up vote
2
down vote
favorite
Claim.$,$ A matrix $,X in {-1,1}^{ntimes n},$ is positive semi-definite if and only if it is of the form $X= xx^{T}$, for some $x in {-1,1 }^n$.
How can I prove this? Proving the 'if' part is easy since $y^Txx^Ty = (x^Ty)^T(x^Ty) geq 0$ for any $y in mathbb{R}^n$. But, the other way around is not that straightforward.
Notice that, $X$ has all ones diagonal since diagonal of a psd matrix cannot have negative elements.
linear-algebra matrices matrix-calculus symmetric-matrices positive-semidefinite
add a comment |
up vote
2
down vote
favorite
up vote
2
down vote
favorite
Claim.$,$ A matrix $,X in {-1,1}^{ntimes n},$ is positive semi-definite if and only if it is of the form $X= xx^{T}$, for some $x in {-1,1 }^n$.
How can I prove this? Proving the 'if' part is easy since $y^Txx^Ty = (x^Ty)^T(x^Ty) geq 0$ for any $y in mathbb{R}^n$. But, the other way around is not that straightforward.
Notice that, $X$ has all ones diagonal since diagonal of a psd matrix cannot have negative elements.
linear-algebra matrices matrix-calculus symmetric-matrices positive-semidefinite
Claim.$,$ A matrix $,X in {-1,1}^{ntimes n},$ is positive semi-definite if and only if it is of the form $X= xx^{T}$, for some $x in {-1,1 }^n$.
How can I prove this? Proving the 'if' part is easy since $y^Txx^Ty = (x^Ty)^T(x^Ty) geq 0$ for any $y in mathbb{R}^n$. But, the other way around is not that straightforward.
Notice that, $X$ has all ones diagonal since diagonal of a psd matrix cannot have negative elements.
linear-algebra matrices matrix-calculus symmetric-matrices positive-semidefinite
linear-algebra matrices matrix-calculus symmetric-matrices positive-semidefinite
edited Dec 3 at 19:28
Yiorgos S. Smyrlis
62.3k1383162
62.3k1383162
asked Nov 22 at 18:45
independentvariable
11710
11710
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
up vote
2
down vote
accepted
Let $A$ be our matrix. The corresponding quadratic form should look like
$$
p(x_1,ldots,x_n)=boldsymbol x^tAboldsymbol x=x_1^n+cdots+x_n^2+2sum_{1le i<jle n}varepsilon_{ij}x_ix_j, tag{1}
$$
where $varepsilon=pm 1$ and $boldsymbol x=(x_1,ldots,x_n)$. We shall show that $p$ is positive semi-definite (psd), then
$$
p(x_1,ldots,x_n)=(varepsilon_1 x_1+cdots+varepsilon_n x_n)^2, tag{2}
$$
for suitable $varepsilon_j=pm 1$, $j=1,ldots,n$, in which case
$A=(varepsilon_1,ldots,varepsilon_n)(varepsilon_1,ldots,varepsilon_n)^t$.
If the expression $(1)$ is psd, then $$
varepsilon_{ij}varepsilon_{jk}=varepsilon_{ik},quadtext{for all $ine jne kne i$.}
tag{3}
$$
If $(3)$ fails, and for some $i,j,k$, we have
$varepsilon_{ij}varepsilon_{jk}=-varepsilon_{ik}$, then letting $boldsymbol xin mathbb R$ be the vector having $varepsilon_{jk},varepsilon_{ik},varepsilon_{ij}$ in the posistions $i,j,k$, respectively, and zero everywhere else, it can be readily seen that
$$
boldsymbol x^tAboldsymbol x=varepsilon_{jk}^2
+varepsilon_{ik}^2+varepsilon_{ij}^2+2
(varepsilon_{ij}varepsilon_{jk}+varepsilon_{ij}varepsilon_{ik}
+varepsilon_{jk}varepsilon_{ik})=3-6=-3<0.
$$
But if $(3)$ holds, then
$$
x_1^n+cdots+x_n^2+2sum_{1le i<jle n}varepsilon_{ij}x_ix_j=(x_1+varepsilon_{12}x_2+varepsilon_{12}varepsilon_{23}x_3+cdots+varepsilon_{12}cdotsvarepsilon_{n-1,n}x_n)^2
$$
Note. Another proof is based on the Pigeonhole Principle. There exist exactly $2^{n-1}$ symmetric matrices in ${-1,1}^{ntimes n},$ which satisfy $(3)$ and $varepsilon_{ii}=1$, for all $i$. Also, there exist exactly $2^{n-1}$ matrices of the form $boldsymbol xcdotboldsymbol x^t$, where $boldsymbol x$ contains elements in ${-1,1}$.
1
How do you arrive at (3)? Why does a product of $epsilon$'s appear?
– daw
Nov 22 at 20:36
@daw To show that (3) is necessary for spd-ness, assume it does not hold, i.e., $varepsilon_{12}=-1$, $varepsilon_{23}=-1$, $varepsilon_{13}=-1$, and $boldsymbol x=(1,1,1)$, then $p(1,1,1)=-3$.
– Yiorgos S. Smyrlis
Nov 22 at 21:11
Can you please provide more detail? This is not very clear. The last part is not obvious.
– independentvariable
Nov 23 at 13:27
@independentvariable See my modified answer.
– Yiorgos S. Smyrlis
Nov 23 at 18:55
Ps: I believe (3) should hold for $i neq j neq k neq i$. Am I correct?
– independentvariable
Nov 23 at 18:56
|
show 2 more comments
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3009499%2fdecomposing-a-positive-semi-definite-matrix-with-all-1-1-elements%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
2
down vote
accepted
Let $A$ be our matrix. The corresponding quadratic form should look like
$$
p(x_1,ldots,x_n)=boldsymbol x^tAboldsymbol x=x_1^n+cdots+x_n^2+2sum_{1le i<jle n}varepsilon_{ij}x_ix_j, tag{1}
$$
where $varepsilon=pm 1$ and $boldsymbol x=(x_1,ldots,x_n)$. We shall show that $p$ is positive semi-definite (psd), then
$$
p(x_1,ldots,x_n)=(varepsilon_1 x_1+cdots+varepsilon_n x_n)^2, tag{2}
$$
for suitable $varepsilon_j=pm 1$, $j=1,ldots,n$, in which case
$A=(varepsilon_1,ldots,varepsilon_n)(varepsilon_1,ldots,varepsilon_n)^t$.
If the expression $(1)$ is psd, then $$
varepsilon_{ij}varepsilon_{jk}=varepsilon_{ik},quadtext{for all $ine jne kne i$.}
tag{3}
$$
If $(3)$ fails, and for some $i,j,k$, we have
$varepsilon_{ij}varepsilon_{jk}=-varepsilon_{ik}$, then letting $boldsymbol xin mathbb R$ be the vector having $varepsilon_{jk},varepsilon_{ik},varepsilon_{ij}$ in the posistions $i,j,k$, respectively, and zero everywhere else, it can be readily seen that
$$
boldsymbol x^tAboldsymbol x=varepsilon_{jk}^2
+varepsilon_{ik}^2+varepsilon_{ij}^2+2
(varepsilon_{ij}varepsilon_{jk}+varepsilon_{ij}varepsilon_{ik}
+varepsilon_{jk}varepsilon_{ik})=3-6=-3<0.
$$
But if $(3)$ holds, then
$$
x_1^n+cdots+x_n^2+2sum_{1le i<jle n}varepsilon_{ij}x_ix_j=(x_1+varepsilon_{12}x_2+varepsilon_{12}varepsilon_{23}x_3+cdots+varepsilon_{12}cdotsvarepsilon_{n-1,n}x_n)^2
$$
Note. Another proof is based on the Pigeonhole Principle. There exist exactly $2^{n-1}$ symmetric matrices in ${-1,1}^{ntimes n},$ which satisfy $(3)$ and $varepsilon_{ii}=1$, for all $i$. Also, there exist exactly $2^{n-1}$ matrices of the form $boldsymbol xcdotboldsymbol x^t$, where $boldsymbol x$ contains elements in ${-1,1}$.
1
How do you arrive at (3)? Why does a product of $epsilon$'s appear?
– daw
Nov 22 at 20:36
@daw To show that (3) is necessary for spd-ness, assume it does not hold, i.e., $varepsilon_{12}=-1$, $varepsilon_{23}=-1$, $varepsilon_{13}=-1$, and $boldsymbol x=(1,1,1)$, then $p(1,1,1)=-3$.
– Yiorgos S. Smyrlis
Nov 22 at 21:11
Can you please provide more detail? This is not very clear. The last part is not obvious.
– independentvariable
Nov 23 at 13:27
@independentvariable See my modified answer.
– Yiorgos S. Smyrlis
Nov 23 at 18:55
Ps: I believe (3) should hold for $i neq j neq k neq i$. Am I correct?
– independentvariable
Nov 23 at 18:56
|
show 2 more comments
up vote
2
down vote
accepted
Let $A$ be our matrix. The corresponding quadratic form should look like
$$
p(x_1,ldots,x_n)=boldsymbol x^tAboldsymbol x=x_1^n+cdots+x_n^2+2sum_{1le i<jle n}varepsilon_{ij}x_ix_j, tag{1}
$$
where $varepsilon=pm 1$ and $boldsymbol x=(x_1,ldots,x_n)$. We shall show that $p$ is positive semi-definite (psd), then
$$
p(x_1,ldots,x_n)=(varepsilon_1 x_1+cdots+varepsilon_n x_n)^2, tag{2}
$$
for suitable $varepsilon_j=pm 1$, $j=1,ldots,n$, in which case
$A=(varepsilon_1,ldots,varepsilon_n)(varepsilon_1,ldots,varepsilon_n)^t$.
If the expression $(1)$ is psd, then $$
varepsilon_{ij}varepsilon_{jk}=varepsilon_{ik},quadtext{for all $ine jne kne i$.}
tag{3}
$$
If $(3)$ fails, and for some $i,j,k$, we have
$varepsilon_{ij}varepsilon_{jk}=-varepsilon_{ik}$, then letting $boldsymbol xin mathbb R$ be the vector having $varepsilon_{jk},varepsilon_{ik},varepsilon_{ij}$ in the posistions $i,j,k$, respectively, and zero everywhere else, it can be readily seen that
$$
boldsymbol x^tAboldsymbol x=varepsilon_{jk}^2
+varepsilon_{ik}^2+varepsilon_{ij}^2+2
(varepsilon_{ij}varepsilon_{jk}+varepsilon_{ij}varepsilon_{ik}
+varepsilon_{jk}varepsilon_{ik})=3-6=-3<0.
$$
But if $(3)$ holds, then
$$
x_1^n+cdots+x_n^2+2sum_{1le i<jle n}varepsilon_{ij}x_ix_j=(x_1+varepsilon_{12}x_2+varepsilon_{12}varepsilon_{23}x_3+cdots+varepsilon_{12}cdotsvarepsilon_{n-1,n}x_n)^2
$$
Note. Another proof is based on the Pigeonhole Principle. There exist exactly $2^{n-1}$ symmetric matrices in ${-1,1}^{ntimes n},$ which satisfy $(3)$ and $varepsilon_{ii}=1$, for all $i$. Also, there exist exactly $2^{n-1}$ matrices of the form $boldsymbol xcdotboldsymbol x^t$, where $boldsymbol x$ contains elements in ${-1,1}$.
1
How do you arrive at (3)? Why does a product of $epsilon$'s appear?
– daw
Nov 22 at 20:36
@daw To show that (3) is necessary for spd-ness, assume it does not hold, i.e., $varepsilon_{12}=-1$, $varepsilon_{23}=-1$, $varepsilon_{13}=-1$, and $boldsymbol x=(1,1,1)$, then $p(1,1,1)=-3$.
– Yiorgos S. Smyrlis
Nov 22 at 21:11
Can you please provide more detail? This is not very clear. The last part is not obvious.
– independentvariable
Nov 23 at 13:27
@independentvariable See my modified answer.
– Yiorgos S. Smyrlis
Nov 23 at 18:55
Ps: I believe (3) should hold for $i neq j neq k neq i$. Am I correct?
– independentvariable
Nov 23 at 18:56
|
show 2 more comments
up vote
2
down vote
accepted
up vote
2
down vote
accepted
Let $A$ be our matrix. The corresponding quadratic form should look like
$$
p(x_1,ldots,x_n)=boldsymbol x^tAboldsymbol x=x_1^n+cdots+x_n^2+2sum_{1le i<jle n}varepsilon_{ij}x_ix_j, tag{1}
$$
where $varepsilon=pm 1$ and $boldsymbol x=(x_1,ldots,x_n)$. We shall show that $p$ is positive semi-definite (psd), then
$$
p(x_1,ldots,x_n)=(varepsilon_1 x_1+cdots+varepsilon_n x_n)^2, tag{2}
$$
for suitable $varepsilon_j=pm 1$, $j=1,ldots,n$, in which case
$A=(varepsilon_1,ldots,varepsilon_n)(varepsilon_1,ldots,varepsilon_n)^t$.
If the expression $(1)$ is psd, then $$
varepsilon_{ij}varepsilon_{jk}=varepsilon_{ik},quadtext{for all $ine jne kne i$.}
tag{3}
$$
If $(3)$ fails, and for some $i,j,k$, we have
$varepsilon_{ij}varepsilon_{jk}=-varepsilon_{ik}$, then letting $boldsymbol xin mathbb R$ be the vector having $varepsilon_{jk},varepsilon_{ik},varepsilon_{ij}$ in the posistions $i,j,k$, respectively, and zero everywhere else, it can be readily seen that
$$
boldsymbol x^tAboldsymbol x=varepsilon_{jk}^2
+varepsilon_{ik}^2+varepsilon_{ij}^2+2
(varepsilon_{ij}varepsilon_{jk}+varepsilon_{ij}varepsilon_{ik}
+varepsilon_{jk}varepsilon_{ik})=3-6=-3<0.
$$
But if $(3)$ holds, then
$$
x_1^n+cdots+x_n^2+2sum_{1le i<jle n}varepsilon_{ij}x_ix_j=(x_1+varepsilon_{12}x_2+varepsilon_{12}varepsilon_{23}x_3+cdots+varepsilon_{12}cdotsvarepsilon_{n-1,n}x_n)^2
$$
Note. Another proof is based on the Pigeonhole Principle. There exist exactly $2^{n-1}$ symmetric matrices in ${-1,1}^{ntimes n},$ which satisfy $(3)$ and $varepsilon_{ii}=1$, for all $i$. Also, there exist exactly $2^{n-1}$ matrices of the form $boldsymbol xcdotboldsymbol x^t$, where $boldsymbol x$ contains elements in ${-1,1}$.
Let $A$ be our matrix. The corresponding quadratic form should look like
$$
p(x_1,ldots,x_n)=boldsymbol x^tAboldsymbol x=x_1^n+cdots+x_n^2+2sum_{1le i<jle n}varepsilon_{ij}x_ix_j, tag{1}
$$
where $varepsilon=pm 1$ and $boldsymbol x=(x_1,ldots,x_n)$. We shall show that $p$ is positive semi-definite (psd), then
$$
p(x_1,ldots,x_n)=(varepsilon_1 x_1+cdots+varepsilon_n x_n)^2, tag{2}
$$
for suitable $varepsilon_j=pm 1$, $j=1,ldots,n$, in which case
$A=(varepsilon_1,ldots,varepsilon_n)(varepsilon_1,ldots,varepsilon_n)^t$.
If the expression $(1)$ is psd, then $$
varepsilon_{ij}varepsilon_{jk}=varepsilon_{ik},quadtext{for all $ine jne kne i$.}
tag{3}
$$
If $(3)$ fails, and for some $i,j,k$, we have
$varepsilon_{ij}varepsilon_{jk}=-varepsilon_{ik}$, then letting $boldsymbol xin mathbb R$ be the vector having $varepsilon_{jk},varepsilon_{ik},varepsilon_{ij}$ in the posistions $i,j,k$, respectively, and zero everywhere else, it can be readily seen that
$$
boldsymbol x^tAboldsymbol x=varepsilon_{jk}^2
+varepsilon_{ik}^2+varepsilon_{ij}^2+2
(varepsilon_{ij}varepsilon_{jk}+varepsilon_{ij}varepsilon_{ik}
+varepsilon_{jk}varepsilon_{ik})=3-6=-3<0.
$$
But if $(3)$ holds, then
$$
x_1^n+cdots+x_n^2+2sum_{1le i<jle n}varepsilon_{ij}x_ix_j=(x_1+varepsilon_{12}x_2+varepsilon_{12}varepsilon_{23}x_3+cdots+varepsilon_{12}cdotsvarepsilon_{n-1,n}x_n)^2
$$
Note. Another proof is based on the Pigeonhole Principle. There exist exactly $2^{n-1}$ symmetric matrices in ${-1,1}^{ntimes n},$ which satisfy $(3)$ and $varepsilon_{ii}=1$, for all $i$. Also, there exist exactly $2^{n-1}$ matrices of the form $boldsymbol xcdotboldsymbol x^t$, where $boldsymbol x$ contains elements in ${-1,1}$.
edited Nov 25 at 15:32
answered Nov 22 at 20:00
Yiorgos S. Smyrlis
62.3k1383162
62.3k1383162
1
How do you arrive at (3)? Why does a product of $epsilon$'s appear?
– daw
Nov 22 at 20:36
@daw To show that (3) is necessary for spd-ness, assume it does not hold, i.e., $varepsilon_{12}=-1$, $varepsilon_{23}=-1$, $varepsilon_{13}=-1$, and $boldsymbol x=(1,1,1)$, then $p(1,1,1)=-3$.
– Yiorgos S. Smyrlis
Nov 22 at 21:11
Can you please provide more detail? This is not very clear. The last part is not obvious.
– independentvariable
Nov 23 at 13:27
@independentvariable See my modified answer.
– Yiorgos S. Smyrlis
Nov 23 at 18:55
Ps: I believe (3) should hold for $i neq j neq k neq i$. Am I correct?
– independentvariable
Nov 23 at 18:56
|
show 2 more comments
1
How do you arrive at (3)? Why does a product of $epsilon$'s appear?
– daw
Nov 22 at 20:36
@daw To show that (3) is necessary for spd-ness, assume it does not hold, i.e., $varepsilon_{12}=-1$, $varepsilon_{23}=-1$, $varepsilon_{13}=-1$, and $boldsymbol x=(1,1,1)$, then $p(1,1,1)=-3$.
– Yiorgos S. Smyrlis
Nov 22 at 21:11
Can you please provide more detail? This is not very clear. The last part is not obvious.
– independentvariable
Nov 23 at 13:27
@independentvariable See my modified answer.
– Yiorgos S. Smyrlis
Nov 23 at 18:55
Ps: I believe (3) should hold for $i neq j neq k neq i$. Am I correct?
– independentvariable
Nov 23 at 18:56
1
1
How do you arrive at (3)? Why does a product of $epsilon$'s appear?
– daw
Nov 22 at 20:36
How do you arrive at (3)? Why does a product of $epsilon$'s appear?
– daw
Nov 22 at 20:36
@daw To show that (3) is necessary for spd-ness, assume it does not hold, i.e., $varepsilon_{12}=-1$, $varepsilon_{23}=-1$, $varepsilon_{13}=-1$, and $boldsymbol x=(1,1,1)$, then $p(1,1,1)=-3$.
– Yiorgos S. Smyrlis
Nov 22 at 21:11
@daw To show that (3) is necessary for spd-ness, assume it does not hold, i.e., $varepsilon_{12}=-1$, $varepsilon_{23}=-1$, $varepsilon_{13}=-1$, and $boldsymbol x=(1,1,1)$, then $p(1,1,1)=-3$.
– Yiorgos S. Smyrlis
Nov 22 at 21:11
Can you please provide more detail? This is not very clear. The last part is not obvious.
– independentvariable
Nov 23 at 13:27
Can you please provide more detail? This is not very clear. The last part is not obvious.
– independentvariable
Nov 23 at 13:27
@independentvariable See my modified answer.
– Yiorgos S. Smyrlis
Nov 23 at 18:55
@independentvariable See my modified answer.
– Yiorgos S. Smyrlis
Nov 23 at 18:55
Ps: I believe (3) should hold for $i neq j neq k neq i$. Am I correct?
– independentvariable
Nov 23 at 18:56
Ps: I believe (3) should hold for $i neq j neq k neq i$. Am I correct?
– independentvariable
Nov 23 at 18:56
|
show 2 more comments
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3009499%2fdecomposing-a-positive-semi-definite-matrix-with-all-1-1-elements%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown