Trick for Inverse Hollow Matrix Calculation (Self-Answered)












1












$begingroup$


Let $A$ be the hollow matrix :
$$
A=begin{pmatrix}
0&1&1&1\
1&0&1&1\
1&1&0&1\
1&1&1&0
end{pmatrix}
$$



Find the inverse matrix $A^{-1}$ without using any elementary row/ column operations.










share|cite|improve this question









$endgroup$












  • $begingroup$
    What do you mean by "a hollow matrix" ?
    $endgroup$
    – Jean Marie
    Jan 7 at 20:49
















1












$begingroup$


Let $A$ be the hollow matrix :
$$
A=begin{pmatrix}
0&1&1&1\
1&0&1&1\
1&1&0&1\
1&1&1&0
end{pmatrix}
$$



Find the inverse matrix $A^{-1}$ without using any elementary row/ column operations.










share|cite|improve this question









$endgroup$












  • $begingroup$
    What do you mean by "a hollow matrix" ?
    $endgroup$
    – Jean Marie
    Jan 7 at 20:49














1












1








1





$begingroup$


Let $A$ be the hollow matrix :
$$
A=begin{pmatrix}
0&1&1&1\
1&0&1&1\
1&1&0&1\
1&1&1&0
end{pmatrix}
$$



Find the inverse matrix $A^{-1}$ without using any elementary row/ column operations.










share|cite|improve this question









$endgroup$




Let $A$ be the hollow matrix :
$$
A=begin{pmatrix}
0&1&1&1\
1&0&1&1\
1&1&0&1\
1&1&1&0
end{pmatrix}
$$



Find the inverse matrix $A^{-1}$ without using any elementary row/ column operations.







linear-algebra matrices inverse






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 5 at 15:20









NetUser5y62NetUser5y62

525215




525215












  • $begingroup$
    What do you mean by "a hollow matrix" ?
    $endgroup$
    – Jean Marie
    Jan 7 at 20:49


















  • $begingroup$
    What do you mean by "a hollow matrix" ?
    $endgroup$
    – Jean Marie
    Jan 7 at 20:49
















$begingroup$
What do you mean by "a hollow matrix" ?
$endgroup$
– Jean Marie
Jan 7 at 20:49




$begingroup$
What do you mean by "a hollow matrix" ?
$endgroup$
– Jean Marie
Jan 7 at 20:49










1 Answer
1






active

oldest

votes


















2












$begingroup$

Notice that
$$
A=
begin{pmatrix}
1&1&1&1\
1&1&1&1\
1&1&1&1\
1&1&1&1
end{pmatrix} - I_{4times4}
$$



Let
$$
B=
begin{pmatrix}
1&1&1&1\
1&1&1&1\
1&1&1&1\
1&1&1&1
end{pmatrix}
$$



then $B=A+I$. Observe that $B^2 = (A+I)^2=4B$. Expanding,
$$
A^2+2A+I = 4(A+I) implies A^2-2A=3I
$$

Therefore $A^{-1}=frac{1}{3}(A-2I)$.



More generally, this method gives us an easy way to express the inverse of a hollow matrix $A$ (of the particular stated form) of any order $n$, which is the main reason for posting this question.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    You can generalize this to $alpha I+beta B$.
    $endgroup$
    – amd
    Jan 5 at 20:00












  • $begingroup$
    This is in fact a classical method, with the use of Cayley-Hamilton theorem (see yutsumura.com/…) in general, or the minimal polynomial.
    $endgroup$
    – Jean Marie
    Jan 7 at 20:48












Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062821%2ftrick-for-inverse-hollow-matrix-calculation-self-answered%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









2












$begingroup$

Notice that
$$
A=
begin{pmatrix}
1&1&1&1\
1&1&1&1\
1&1&1&1\
1&1&1&1
end{pmatrix} - I_{4times4}
$$



Let
$$
B=
begin{pmatrix}
1&1&1&1\
1&1&1&1\
1&1&1&1\
1&1&1&1
end{pmatrix}
$$



then $B=A+I$. Observe that $B^2 = (A+I)^2=4B$. Expanding,
$$
A^2+2A+I = 4(A+I) implies A^2-2A=3I
$$

Therefore $A^{-1}=frac{1}{3}(A-2I)$.



More generally, this method gives us an easy way to express the inverse of a hollow matrix $A$ (of the particular stated form) of any order $n$, which is the main reason for posting this question.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    You can generalize this to $alpha I+beta B$.
    $endgroup$
    – amd
    Jan 5 at 20:00












  • $begingroup$
    This is in fact a classical method, with the use of Cayley-Hamilton theorem (see yutsumura.com/…) in general, or the minimal polynomial.
    $endgroup$
    – Jean Marie
    Jan 7 at 20:48
















2












$begingroup$

Notice that
$$
A=
begin{pmatrix}
1&1&1&1\
1&1&1&1\
1&1&1&1\
1&1&1&1
end{pmatrix} - I_{4times4}
$$



Let
$$
B=
begin{pmatrix}
1&1&1&1\
1&1&1&1\
1&1&1&1\
1&1&1&1
end{pmatrix}
$$



then $B=A+I$. Observe that $B^2 = (A+I)^2=4B$. Expanding,
$$
A^2+2A+I = 4(A+I) implies A^2-2A=3I
$$

Therefore $A^{-1}=frac{1}{3}(A-2I)$.



More generally, this method gives us an easy way to express the inverse of a hollow matrix $A$ (of the particular stated form) of any order $n$, which is the main reason for posting this question.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    You can generalize this to $alpha I+beta B$.
    $endgroup$
    – amd
    Jan 5 at 20:00












  • $begingroup$
    This is in fact a classical method, with the use of Cayley-Hamilton theorem (see yutsumura.com/…) in general, or the minimal polynomial.
    $endgroup$
    – Jean Marie
    Jan 7 at 20:48














2












2








2





$begingroup$

Notice that
$$
A=
begin{pmatrix}
1&1&1&1\
1&1&1&1\
1&1&1&1\
1&1&1&1
end{pmatrix} - I_{4times4}
$$



Let
$$
B=
begin{pmatrix}
1&1&1&1\
1&1&1&1\
1&1&1&1\
1&1&1&1
end{pmatrix}
$$



then $B=A+I$. Observe that $B^2 = (A+I)^2=4B$. Expanding,
$$
A^2+2A+I = 4(A+I) implies A^2-2A=3I
$$

Therefore $A^{-1}=frac{1}{3}(A-2I)$.



More generally, this method gives us an easy way to express the inverse of a hollow matrix $A$ (of the particular stated form) of any order $n$, which is the main reason for posting this question.






share|cite|improve this answer











$endgroup$



Notice that
$$
A=
begin{pmatrix}
1&1&1&1\
1&1&1&1\
1&1&1&1\
1&1&1&1
end{pmatrix} - I_{4times4}
$$



Let
$$
B=
begin{pmatrix}
1&1&1&1\
1&1&1&1\
1&1&1&1\
1&1&1&1
end{pmatrix}
$$



then $B=A+I$. Observe that $B^2 = (A+I)^2=4B$. Expanding,
$$
A^2+2A+I = 4(A+I) implies A^2-2A=3I
$$

Therefore $A^{-1}=frac{1}{3}(A-2I)$.



More generally, this method gives us an easy way to express the inverse of a hollow matrix $A$ (of the particular stated form) of any order $n$, which is the main reason for posting this question.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Jan 5 at 15:38

























answered Jan 5 at 15:20









NetUser5y62NetUser5y62

525215




525215












  • $begingroup$
    You can generalize this to $alpha I+beta B$.
    $endgroup$
    – amd
    Jan 5 at 20:00












  • $begingroup$
    This is in fact a classical method, with the use of Cayley-Hamilton theorem (see yutsumura.com/…) in general, or the minimal polynomial.
    $endgroup$
    – Jean Marie
    Jan 7 at 20:48


















  • $begingroup$
    You can generalize this to $alpha I+beta B$.
    $endgroup$
    – amd
    Jan 5 at 20:00












  • $begingroup$
    This is in fact a classical method, with the use of Cayley-Hamilton theorem (see yutsumura.com/…) in general, or the minimal polynomial.
    $endgroup$
    – Jean Marie
    Jan 7 at 20:48
















$begingroup$
You can generalize this to $alpha I+beta B$.
$endgroup$
– amd
Jan 5 at 20:00






$begingroup$
You can generalize this to $alpha I+beta B$.
$endgroup$
– amd
Jan 5 at 20:00














$begingroup$
This is in fact a classical method, with the use of Cayley-Hamilton theorem (see yutsumura.com/…) in general, or the minimal polynomial.
$endgroup$
– Jean Marie
Jan 7 at 20:48




$begingroup$
This is in fact a classical method, with the use of Cayley-Hamilton theorem (see yutsumura.com/…) in general, or the minimal polynomial.
$endgroup$
– Jean Marie
Jan 7 at 20:48


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062821%2ftrick-for-inverse-hollow-matrix-calculation-self-answered%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Aardman Animations

Are they similar matrix

“minimization” problem in Euclidean space related to orthonormal basis