Exercise XV num 12 - Calculus Made Easy












1












$begingroup$


A bucket of given capacity has the shape of a horizontal isosceles triangular prism with the apex underneath, and the opposite face open.



Find its dimensions in order that the least amount of iron sheet may be used in its construction.



My approach:



Lets say all dimensions are each $ > 0$;



Volume of the bucket - $V=frac{lwh}{2}$ ,where l-length of toblerone, w-width, h-height;



Total exterior area of the bucket - $A= 2frac {hw}{2}+2l(frac{w^2}{4}+h^2)^frac{1}{2} Rightarrow$ $A= hw+frac{4V}{hw}(frac{w^2}{4}+h^2)^frac{1}{2} $;



$frac{partial A}{partial h} = w - frac {4V}{h^2w}(frac{w^2}{4}+h^2)^frac{1}{2}+frac {4V}{w(frac{w^2}{4}+h^2)^frac{1}{2}}$;



$frac{partial A}{partial w} = h - frac {4V}{hw^2}(frac{w^2}{4}+h^2)^frac{1}{2}+frac {V}{h(frac{w^2}{4}+h^2)^frac{1}{2}}$;



Is this the right path to continue? Looks too messy in my eyes.










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    A bucket of given capacity has the shape of a horizontal isosceles triangular prism with the apex underneath, and the opposite face open.



    Find its dimensions in order that the least amount of iron sheet may be used in its construction.



    My approach:



    Lets say all dimensions are each $ > 0$;



    Volume of the bucket - $V=frac{lwh}{2}$ ,where l-length of toblerone, w-width, h-height;



    Total exterior area of the bucket - $A= 2frac {hw}{2}+2l(frac{w^2}{4}+h^2)^frac{1}{2} Rightarrow$ $A= hw+frac{4V}{hw}(frac{w^2}{4}+h^2)^frac{1}{2} $;



    $frac{partial A}{partial h} = w - frac {4V}{h^2w}(frac{w^2}{4}+h^2)^frac{1}{2}+frac {4V}{w(frac{w^2}{4}+h^2)^frac{1}{2}}$;



    $frac{partial A}{partial w} = h - frac {4V}{hw^2}(frac{w^2}{4}+h^2)^frac{1}{2}+frac {V}{h(frac{w^2}{4}+h^2)^frac{1}{2}}$;



    Is this the right path to continue? Looks too messy in my eyes.










    share|cite|improve this question











    $endgroup$















      1












      1








      1





      $begingroup$


      A bucket of given capacity has the shape of a horizontal isosceles triangular prism with the apex underneath, and the opposite face open.



      Find its dimensions in order that the least amount of iron sheet may be used in its construction.



      My approach:



      Lets say all dimensions are each $ > 0$;



      Volume of the bucket - $V=frac{lwh}{2}$ ,where l-length of toblerone, w-width, h-height;



      Total exterior area of the bucket - $A= 2frac {hw}{2}+2l(frac{w^2}{4}+h^2)^frac{1}{2} Rightarrow$ $A= hw+frac{4V}{hw}(frac{w^2}{4}+h^2)^frac{1}{2} $;



      $frac{partial A}{partial h} = w - frac {4V}{h^2w}(frac{w^2}{4}+h^2)^frac{1}{2}+frac {4V}{w(frac{w^2}{4}+h^2)^frac{1}{2}}$;



      $frac{partial A}{partial w} = h - frac {4V}{hw^2}(frac{w^2}{4}+h^2)^frac{1}{2}+frac {V}{h(frac{w^2}{4}+h^2)^frac{1}{2}}$;



      Is this the right path to continue? Looks too messy in my eyes.










      share|cite|improve this question











      $endgroup$




      A bucket of given capacity has the shape of a horizontal isosceles triangular prism with the apex underneath, and the opposite face open.



      Find its dimensions in order that the least amount of iron sheet may be used in its construction.



      My approach:



      Lets say all dimensions are each $ > 0$;



      Volume of the bucket - $V=frac{lwh}{2}$ ,where l-length of toblerone, w-width, h-height;



      Total exterior area of the bucket - $A= 2frac {hw}{2}+2l(frac{w^2}{4}+h^2)^frac{1}{2} Rightarrow$ $A= hw+frac{4V}{hw}(frac{w^2}{4}+h^2)^frac{1}{2} $;



      $frac{partial A}{partial h} = w - frac {4V}{h^2w}(frac{w^2}{4}+h^2)^frac{1}{2}+frac {4V}{w(frac{w^2}{4}+h^2)^frac{1}{2}}$;



      $frac{partial A}{partial w} = h - frac {4V}{hw^2}(frac{w^2}{4}+h^2)^frac{1}{2}+frac {V}{h(frac{w^2}{4}+h^2)^frac{1}{2}}$;



      Is this the right path to continue? Looks too messy in my eyes.







      calculus optimization partial-derivative






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 5 at 15:01







      LeoBonhart

















      asked Jan 5 at 14:49









      LeoBonhartLeoBonhart

      134




      134






















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          It is not so messy. Use $w=lambda h$ to get
          $$frac{partial A}{partial h} =h lambda -frac{2 lambda V}{h^2 sqrt{lambda ^2+4}}=0implies h -frac{2 V}{h^2 sqrt{lambda ^2+4}}=0tag 1$$
          $$frac{partial A}{partial w} =h-frac{8 V}{h^2 lambda ^2 sqrt{lambda ^2+4}}=tag 20$$
          Subtract one from the other to get
          $$frac{2 left(lambda ^2-4right) V}{h^2 lambda ^2 sqrt{lambda ^2+4}}=0implies lambda=2$$ Use this in $(1)$ to get $h$ and once done reuse $w=lambda h$.






          share|cite|improve this answer









          $endgroup$














            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062783%2fexercise-xv-num-12-calculus-made-easy%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0












            $begingroup$

            It is not so messy. Use $w=lambda h$ to get
            $$frac{partial A}{partial h} =h lambda -frac{2 lambda V}{h^2 sqrt{lambda ^2+4}}=0implies h -frac{2 V}{h^2 sqrt{lambda ^2+4}}=0tag 1$$
            $$frac{partial A}{partial w} =h-frac{8 V}{h^2 lambda ^2 sqrt{lambda ^2+4}}=tag 20$$
            Subtract one from the other to get
            $$frac{2 left(lambda ^2-4right) V}{h^2 lambda ^2 sqrt{lambda ^2+4}}=0implies lambda=2$$ Use this in $(1)$ to get $h$ and once done reuse $w=lambda h$.






            share|cite|improve this answer









            $endgroup$


















              0












              $begingroup$

              It is not so messy. Use $w=lambda h$ to get
              $$frac{partial A}{partial h} =h lambda -frac{2 lambda V}{h^2 sqrt{lambda ^2+4}}=0implies h -frac{2 V}{h^2 sqrt{lambda ^2+4}}=0tag 1$$
              $$frac{partial A}{partial w} =h-frac{8 V}{h^2 lambda ^2 sqrt{lambda ^2+4}}=tag 20$$
              Subtract one from the other to get
              $$frac{2 left(lambda ^2-4right) V}{h^2 lambda ^2 sqrt{lambda ^2+4}}=0implies lambda=2$$ Use this in $(1)$ to get $h$ and once done reuse $w=lambda h$.






              share|cite|improve this answer









              $endgroup$
















                0












                0








                0





                $begingroup$

                It is not so messy. Use $w=lambda h$ to get
                $$frac{partial A}{partial h} =h lambda -frac{2 lambda V}{h^2 sqrt{lambda ^2+4}}=0implies h -frac{2 V}{h^2 sqrt{lambda ^2+4}}=0tag 1$$
                $$frac{partial A}{partial w} =h-frac{8 V}{h^2 lambda ^2 sqrt{lambda ^2+4}}=tag 20$$
                Subtract one from the other to get
                $$frac{2 left(lambda ^2-4right) V}{h^2 lambda ^2 sqrt{lambda ^2+4}}=0implies lambda=2$$ Use this in $(1)$ to get $h$ and once done reuse $w=lambda h$.






                share|cite|improve this answer









                $endgroup$



                It is not so messy. Use $w=lambda h$ to get
                $$frac{partial A}{partial h} =h lambda -frac{2 lambda V}{h^2 sqrt{lambda ^2+4}}=0implies h -frac{2 V}{h^2 sqrt{lambda ^2+4}}=0tag 1$$
                $$frac{partial A}{partial w} =h-frac{8 V}{h^2 lambda ^2 sqrt{lambda ^2+4}}=tag 20$$
                Subtract one from the other to get
                $$frac{2 left(lambda ^2-4right) V}{h^2 lambda ^2 sqrt{lambda ^2+4}}=0implies lambda=2$$ Use this in $(1)$ to get $h$ and once done reuse $w=lambda h$.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Jan 5 at 15:31









                Claude LeiboviciClaude Leibovici

                125k1158135




                125k1158135






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062783%2fexercise-xv-num-12-calculus-made-easy%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Aardman Animations

                    Are they similar matrix

                    “minimization” problem in Euclidean space related to orthonormal basis