show this inequality to find simple proof $prod_{i=1}^{n}(1+frac{1}{i^2})<4$












0












$begingroup$


show this
$$prod_{n=1}^{N}left(1+dfrac{1}{n^2}right)<4tag{1}$$



I have know this can find the value
$$prod_{n=1}^{+infty}left(1+dfrac{1}{n^2}right)=dfrac{sinh{pi}}{pi}=3.67<4$$Prove that $prod_{k=2}^{+infty} (1+1/k^2) = sinh(pi)/(2 pi)$.



But I think the problem $(1)$ have Simple proof?That is, we avoid calculating the result to give proof with inequality? Thanks










share|cite|improve this question











$endgroup$












  • $begingroup$
    @RossMillikan,the links is $prod_{k=2}^{+infty}$ and my problem is $prod_{k=1}^{+infty}$
    $endgroup$
    – function sug
    Dec 20 '18 at 6:10


















0












$begingroup$


show this
$$prod_{n=1}^{N}left(1+dfrac{1}{n^2}right)<4tag{1}$$



I have know this can find the value
$$prod_{n=1}^{+infty}left(1+dfrac{1}{n^2}right)=dfrac{sinh{pi}}{pi}=3.67<4$$Prove that $prod_{k=2}^{+infty} (1+1/k^2) = sinh(pi)/(2 pi)$.



But I think the problem $(1)$ have Simple proof?That is, we avoid calculating the result to give proof with inequality? Thanks










share|cite|improve this question











$endgroup$












  • $begingroup$
    @RossMillikan,the links is $prod_{k=2}^{+infty}$ and my problem is $prod_{k=1}^{+infty}$
    $endgroup$
    – function sug
    Dec 20 '18 at 6:10
















0












0








0


1



$begingroup$


show this
$$prod_{n=1}^{N}left(1+dfrac{1}{n^2}right)<4tag{1}$$



I have know this can find the value
$$prod_{n=1}^{+infty}left(1+dfrac{1}{n^2}right)=dfrac{sinh{pi}}{pi}=3.67<4$$Prove that $prod_{k=2}^{+infty} (1+1/k^2) = sinh(pi)/(2 pi)$.



But I think the problem $(1)$ have Simple proof?That is, we avoid calculating the result to give proof with inequality? Thanks










share|cite|improve this question











$endgroup$




show this
$$prod_{n=1}^{N}left(1+dfrac{1}{n^2}right)<4tag{1}$$



I have know this can find the value
$$prod_{n=1}^{+infty}left(1+dfrac{1}{n^2}right)=dfrac{sinh{pi}}{pi}=3.67<4$$Prove that $prod_{k=2}^{+infty} (1+1/k^2) = sinh(pi)/(2 pi)$.



But I think the problem $(1)$ have Simple proof?That is, we avoid calculating the result to give proof with inequality? Thanks







inequality






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 20 '18 at 6:09







function sug

















asked Dec 20 '18 at 6:05









function sugfunction sug

3061438




3061438












  • $begingroup$
    @RossMillikan,the links is $prod_{k=2}^{+infty}$ and my problem is $prod_{k=1}^{+infty}$
    $endgroup$
    – function sug
    Dec 20 '18 at 6:10




















  • $begingroup$
    @RossMillikan,the links is $prod_{k=2}^{+infty}$ and my problem is $prod_{k=1}^{+infty}$
    $endgroup$
    – function sug
    Dec 20 '18 at 6:10


















$begingroup$
@RossMillikan,the links is $prod_{k=2}^{+infty}$ and my problem is $prod_{k=1}^{+infty}$
$endgroup$
– function sug
Dec 20 '18 at 6:10






$begingroup$
@RossMillikan,the links is $prod_{k=2}^{+infty}$ and my problem is $prod_{k=1}^{+infty}$
$endgroup$
– function sug
Dec 20 '18 at 6:10












1 Answer
1






active

oldest

votes


















5












$begingroup$

Note that
$$prod^N_{n=2} left(1-frac1{n^2}right) = prod^N_{n=2} frac{(n-1)(n+1)}{n^2} = frac12cdotfrac{N+1}{N} > frac12,$$
and that



$$prod^N_{n=2}left(1+frac1{n^2}right)prod^N_{n=2}left(1-frac1{n^2}right) =prod^N_{n=2}left(1-frac1{n^4}right)< 1.$$
So
$$prod^N_{n=2}left(1+frac1{n^2}right) < 2,$$
and we are done.






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3047216%2fshow-this-inequality-to-find-simple-proof-prod-i-1n1-frac1i24%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    5












    $begingroup$

    Note that
    $$prod^N_{n=2} left(1-frac1{n^2}right) = prod^N_{n=2} frac{(n-1)(n+1)}{n^2} = frac12cdotfrac{N+1}{N} > frac12,$$
    and that



    $$prod^N_{n=2}left(1+frac1{n^2}right)prod^N_{n=2}left(1-frac1{n^2}right) =prod^N_{n=2}left(1-frac1{n^4}right)< 1.$$
    So
    $$prod^N_{n=2}left(1+frac1{n^2}right) < 2,$$
    and we are done.






    share|cite|improve this answer









    $endgroup$


















      5












      $begingroup$

      Note that
      $$prod^N_{n=2} left(1-frac1{n^2}right) = prod^N_{n=2} frac{(n-1)(n+1)}{n^2} = frac12cdotfrac{N+1}{N} > frac12,$$
      and that



      $$prod^N_{n=2}left(1+frac1{n^2}right)prod^N_{n=2}left(1-frac1{n^2}right) =prod^N_{n=2}left(1-frac1{n^4}right)< 1.$$
      So
      $$prod^N_{n=2}left(1+frac1{n^2}right) < 2,$$
      and we are done.






      share|cite|improve this answer









      $endgroup$
















        5












        5








        5





        $begingroup$

        Note that
        $$prod^N_{n=2} left(1-frac1{n^2}right) = prod^N_{n=2} frac{(n-1)(n+1)}{n^2} = frac12cdotfrac{N+1}{N} > frac12,$$
        and that



        $$prod^N_{n=2}left(1+frac1{n^2}right)prod^N_{n=2}left(1-frac1{n^2}right) =prod^N_{n=2}left(1-frac1{n^4}right)< 1.$$
        So
        $$prod^N_{n=2}left(1+frac1{n^2}right) < 2,$$
        and we are done.






        share|cite|improve this answer









        $endgroup$



        Note that
        $$prod^N_{n=2} left(1-frac1{n^2}right) = prod^N_{n=2} frac{(n-1)(n+1)}{n^2} = frac12cdotfrac{N+1}{N} > frac12,$$
        and that



        $$prod^N_{n=2}left(1+frac1{n^2}right)prod^N_{n=2}left(1-frac1{n^2}right) =prod^N_{n=2}left(1-frac1{n^4}right)< 1.$$
        So
        $$prod^N_{n=2}left(1+frac1{n^2}right) < 2,$$
        and we are done.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 20 '18 at 6:15









        Quang HoangQuang Hoang

        13.2k1233




        13.2k1233






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3047216%2fshow-this-inequality-to-find-simple-proof-prod-i-1n1-frac1i24%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Aardman Animations

            Are they similar matrix

            “minimization” problem in Euclidean space related to orthonormal basis