show this inequality to find simple proof $prod_{i=1}^{n}(1+frac{1}{i^2})<4$
$begingroup$
show this
$$prod_{n=1}^{N}left(1+dfrac{1}{n^2}right)<4tag{1}$$
I have know this can find the value
$$prod_{n=1}^{+infty}left(1+dfrac{1}{n^2}right)=dfrac{sinh{pi}}{pi}=3.67<4$$Prove that $prod_{k=2}^{+infty} (1+1/k^2) = sinh(pi)/(2 pi)$.
But I think the problem $(1)$ have Simple proof?That is, we avoid calculating the result to give proof with inequality? Thanks
inequality
$endgroup$
add a comment |
$begingroup$
show this
$$prod_{n=1}^{N}left(1+dfrac{1}{n^2}right)<4tag{1}$$
I have know this can find the value
$$prod_{n=1}^{+infty}left(1+dfrac{1}{n^2}right)=dfrac{sinh{pi}}{pi}=3.67<4$$Prove that $prod_{k=2}^{+infty} (1+1/k^2) = sinh(pi)/(2 pi)$.
But I think the problem $(1)$ have Simple proof?That is, we avoid calculating the result to give proof with inequality? Thanks
inequality
$endgroup$
$begingroup$
@RossMillikan,the links is $prod_{k=2}^{+infty}$ and my problem is $prod_{k=1}^{+infty}$
$endgroup$
– function sug
Dec 20 '18 at 6:10
add a comment |
$begingroup$
show this
$$prod_{n=1}^{N}left(1+dfrac{1}{n^2}right)<4tag{1}$$
I have know this can find the value
$$prod_{n=1}^{+infty}left(1+dfrac{1}{n^2}right)=dfrac{sinh{pi}}{pi}=3.67<4$$Prove that $prod_{k=2}^{+infty} (1+1/k^2) = sinh(pi)/(2 pi)$.
But I think the problem $(1)$ have Simple proof?That is, we avoid calculating the result to give proof with inequality? Thanks
inequality
$endgroup$
show this
$$prod_{n=1}^{N}left(1+dfrac{1}{n^2}right)<4tag{1}$$
I have know this can find the value
$$prod_{n=1}^{+infty}left(1+dfrac{1}{n^2}right)=dfrac{sinh{pi}}{pi}=3.67<4$$Prove that $prod_{k=2}^{+infty} (1+1/k^2) = sinh(pi)/(2 pi)$.
But I think the problem $(1)$ have Simple proof?That is, we avoid calculating the result to give proof with inequality? Thanks
inequality
inequality
edited Dec 20 '18 at 6:09
function sug
asked Dec 20 '18 at 6:05
function sugfunction sug
3061438
3061438
$begingroup$
@RossMillikan,the links is $prod_{k=2}^{+infty}$ and my problem is $prod_{k=1}^{+infty}$
$endgroup$
– function sug
Dec 20 '18 at 6:10
add a comment |
$begingroup$
@RossMillikan,the links is $prod_{k=2}^{+infty}$ and my problem is $prod_{k=1}^{+infty}$
$endgroup$
– function sug
Dec 20 '18 at 6:10
$begingroup$
@RossMillikan,the links is $prod_{k=2}^{+infty}$ and my problem is $prod_{k=1}^{+infty}$
$endgroup$
– function sug
Dec 20 '18 at 6:10
$begingroup$
@RossMillikan,the links is $prod_{k=2}^{+infty}$ and my problem is $prod_{k=1}^{+infty}$
$endgroup$
– function sug
Dec 20 '18 at 6:10
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Note that
$$prod^N_{n=2} left(1-frac1{n^2}right) = prod^N_{n=2} frac{(n-1)(n+1)}{n^2} = frac12cdotfrac{N+1}{N} > frac12,$$
and that
$$prod^N_{n=2}left(1+frac1{n^2}right)prod^N_{n=2}left(1-frac1{n^2}right) =prod^N_{n=2}left(1-frac1{n^4}right)< 1.$$
So
$$prod^N_{n=2}left(1+frac1{n^2}right) < 2,$$
and we are done.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3047216%2fshow-this-inequality-to-find-simple-proof-prod-i-1n1-frac1i24%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Note that
$$prod^N_{n=2} left(1-frac1{n^2}right) = prod^N_{n=2} frac{(n-1)(n+1)}{n^2} = frac12cdotfrac{N+1}{N} > frac12,$$
and that
$$prod^N_{n=2}left(1+frac1{n^2}right)prod^N_{n=2}left(1-frac1{n^2}right) =prod^N_{n=2}left(1-frac1{n^4}right)< 1.$$
So
$$prod^N_{n=2}left(1+frac1{n^2}right) < 2,$$
and we are done.
$endgroup$
add a comment |
$begingroup$
Note that
$$prod^N_{n=2} left(1-frac1{n^2}right) = prod^N_{n=2} frac{(n-1)(n+1)}{n^2} = frac12cdotfrac{N+1}{N} > frac12,$$
and that
$$prod^N_{n=2}left(1+frac1{n^2}right)prod^N_{n=2}left(1-frac1{n^2}right) =prod^N_{n=2}left(1-frac1{n^4}right)< 1.$$
So
$$prod^N_{n=2}left(1+frac1{n^2}right) < 2,$$
and we are done.
$endgroup$
add a comment |
$begingroup$
Note that
$$prod^N_{n=2} left(1-frac1{n^2}right) = prod^N_{n=2} frac{(n-1)(n+1)}{n^2} = frac12cdotfrac{N+1}{N} > frac12,$$
and that
$$prod^N_{n=2}left(1+frac1{n^2}right)prod^N_{n=2}left(1-frac1{n^2}right) =prod^N_{n=2}left(1-frac1{n^4}right)< 1.$$
So
$$prod^N_{n=2}left(1+frac1{n^2}right) < 2,$$
and we are done.
$endgroup$
Note that
$$prod^N_{n=2} left(1-frac1{n^2}right) = prod^N_{n=2} frac{(n-1)(n+1)}{n^2} = frac12cdotfrac{N+1}{N} > frac12,$$
and that
$$prod^N_{n=2}left(1+frac1{n^2}right)prod^N_{n=2}left(1-frac1{n^2}right) =prod^N_{n=2}left(1-frac1{n^4}right)< 1.$$
So
$$prod^N_{n=2}left(1+frac1{n^2}right) < 2,$$
and we are done.
answered Dec 20 '18 at 6:15
Quang HoangQuang Hoang
13.2k1233
13.2k1233
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3047216%2fshow-this-inequality-to-find-simple-proof-prod-i-1n1-frac1i24%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
@RossMillikan,the links is $prod_{k=2}^{+infty}$ and my problem is $prod_{k=1}^{+infty}$
$endgroup$
– function sug
Dec 20 '18 at 6:10