On differentiating $F(x)=ln(2x)$
$begingroup$
If we differentiate $F(x)=ln(2x)$ we will get $F'(x) =dfrac2{2x}$ after the shortcut $F'(x)=dfrac1x$, right?
Now if we integrate $F'(x)$ we will get $F(x)=ln(x)$ but also $F(x)=ln(2x)$. This means $ln(2x)=ln(x)$. What happened?
calculus derivatives
$endgroup$
add a comment |
$begingroup$
If we differentiate $F(x)=ln(2x)$ we will get $F'(x) =dfrac2{2x}$ after the shortcut $F'(x)=dfrac1x$, right?
Now if we integrate $F'(x)$ we will get $F(x)=ln(x)$ but also $F(x)=ln(2x)$. This means $ln(2x)=ln(x)$. What happened?
calculus derivatives
$endgroup$
2
$begingroup$
Antiderivatives are same upto constants.
$endgroup$
– Yadati Kiran
Dec 20 '18 at 6:20
add a comment |
$begingroup$
If we differentiate $F(x)=ln(2x)$ we will get $F'(x) =dfrac2{2x}$ after the shortcut $F'(x)=dfrac1x$, right?
Now if we integrate $F'(x)$ we will get $F(x)=ln(x)$ but also $F(x)=ln(2x)$. This means $ln(2x)=ln(x)$. What happened?
calculus derivatives
$endgroup$
If we differentiate $F(x)=ln(2x)$ we will get $F'(x) =dfrac2{2x}$ after the shortcut $F'(x)=dfrac1x$, right?
Now if we integrate $F'(x)$ we will get $F(x)=ln(x)$ but also $F(x)=ln(2x)$. This means $ln(2x)=ln(x)$. What happened?
calculus derivatives
calculus derivatives
edited Dec 20 '18 at 6:34
Saad
19.7k92352
19.7k92352
asked Dec 20 '18 at 6:11
Osaid Ibrahim Bani SalmanOsaid Ibrahim Bani Salman
244
244
2
$begingroup$
Antiderivatives are same upto constants.
$endgroup$
– Yadati Kiran
Dec 20 '18 at 6:20
add a comment |
2
$begingroup$
Antiderivatives are same upto constants.
$endgroup$
– Yadati Kiran
Dec 20 '18 at 6:20
2
2
$begingroup$
Antiderivatives are same upto constants.
$endgroup$
– Yadati Kiran
Dec 20 '18 at 6:20
$begingroup$
Antiderivatives are same upto constants.
$endgroup$
– Yadati Kiran
Dec 20 '18 at 6:20
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
When you integrate, there is an arbitrary constant $C$ added. So you only get
$$ln(2x)=ln(x)+C.$$
$endgroup$
$begingroup$
this is exactly right Bjorn, thanks.
$endgroup$
– Osaid Ibrahim Bani Salman
Dec 20 '18 at 6:25
add a comment |
$begingroup$
But$$F(x)=ln(2x) =ln 2 + ln x$$
So when you integrate back you get $$ln x + C $$
where the constant $C$ should be the $ln 2$ term.
$endgroup$
1
$begingroup$
This is exactly right, Ahmad Thanks. With recpect
$endgroup$
– Osaid Ibrahim Bani Salman
Dec 20 '18 at 6:26
$begingroup$
im glad it was helpful @OsaidIbrahimBaniSalman
$endgroup$
– Ahmad Bazzi
Dec 20 '18 at 6:43
add a comment |
$begingroup$
The antiderivatives of $1/x$ are not uniquely determined ! They are given by
$$ln x +C.$$
Forthermore $ ln (2x)= ln 2 + ln x.$
Can you proceed ?
$endgroup$
$begingroup$
This is true. Yes i can. Thanks
$endgroup$
– Osaid Ibrahim Bani Salman
Dec 20 '18 at 6:28
$begingroup$
On a connected domain at least.
$endgroup$
– Math_QED
Dec 20 '18 at 7:00
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3047221%2fon-differentiating-fx-ln2x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
When you integrate, there is an arbitrary constant $C$ added. So you only get
$$ln(2x)=ln(x)+C.$$
$endgroup$
$begingroup$
this is exactly right Bjorn, thanks.
$endgroup$
– Osaid Ibrahim Bani Salman
Dec 20 '18 at 6:25
add a comment |
$begingroup$
When you integrate, there is an arbitrary constant $C$ added. So you only get
$$ln(2x)=ln(x)+C.$$
$endgroup$
$begingroup$
this is exactly right Bjorn, thanks.
$endgroup$
– Osaid Ibrahim Bani Salman
Dec 20 '18 at 6:25
add a comment |
$begingroup$
When you integrate, there is an arbitrary constant $C$ added. So you only get
$$ln(2x)=ln(x)+C.$$
$endgroup$
When you integrate, there is an arbitrary constant $C$ added. So you only get
$$ln(2x)=ln(x)+C.$$
answered Dec 20 '18 at 6:13
Bjørn Kjos-HanssenBjørn Kjos-Hanssen
2,097918
2,097918
$begingroup$
this is exactly right Bjorn, thanks.
$endgroup$
– Osaid Ibrahim Bani Salman
Dec 20 '18 at 6:25
add a comment |
$begingroup$
this is exactly right Bjorn, thanks.
$endgroup$
– Osaid Ibrahim Bani Salman
Dec 20 '18 at 6:25
$begingroup$
this is exactly right Bjorn, thanks.
$endgroup$
– Osaid Ibrahim Bani Salman
Dec 20 '18 at 6:25
$begingroup$
this is exactly right Bjorn, thanks.
$endgroup$
– Osaid Ibrahim Bani Salman
Dec 20 '18 at 6:25
add a comment |
$begingroup$
But$$F(x)=ln(2x) =ln 2 + ln x$$
So when you integrate back you get $$ln x + C $$
where the constant $C$ should be the $ln 2$ term.
$endgroup$
1
$begingroup$
This is exactly right, Ahmad Thanks. With recpect
$endgroup$
– Osaid Ibrahim Bani Salman
Dec 20 '18 at 6:26
$begingroup$
im glad it was helpful @OsaidIbrahimBaniSalman
$endgroup$
– Ahmad Bazzi
Dec 20 '18 at 6:43
add a comment |
$begingroup$
But$$F(x)=ln(2x) =ln 2 + ln x$$
So when you integrate back you get $$ln x + C $$
where the constant $C$ should be the $ln 2$ term.
$endgroup$
1
$begingroup$
This is exactly right, Ahmad Thanks. With recpect
$endgroup$
– Osaid Ibrahim Bani Salman
Dec 20 '18 at 6:26
$begingroup$
im glad it was helpful @OsaidIbrahimBaniSalman
$endgroup$
– Ahmad Bazzi
Dec 20 '18 at 6:43
add a comment |
$begingroup$
But$$F(x)=ln(2x) =ln 2 + ln x$$
So when you integrate back you get $$ln x + C $$
where the constant $C$ should be the $ln 2$ term.
$endgroup$
But$$F(x)=ln(2x) =ln 2 + ln x$$
So when you integrate back you get $$ln x + C $$
where the constant $C$ should be the $ln 2$ term.
answered Dec 20 '18 at 6:15
Ahmad BazziAhmad Bazzi
8,3622824
8,3622824
1
$begingroup$
This is exactly right, Ahmad Thanks. With recpect
$endgroup$
– Osaid Ibrahim Bani Salman
Dec 20 '18 at 6:26
$begingroup$
im glad it was helpful @OsaidIbrahimBaniSalman
$endgroup$
– Ahmad Bazzi
Dec 20 '18 at 6:43
add a comment |
1
$begingroup$
This is exactly right, Ahmad Thanks. With recpect
$endgroup$
– Osaid Ibrahim Bani Salman
Dec 20 '18 at 6:26
$begingroup$
im glad it was helpful @OsaidIbrahimBaniSalman
$endgroup$
– Ahmad Bazzi
Dec 20 '18 at 6:43
1
1
$begingroup$
This is exactly right, Ahmad Thanks. With recpect
$endgroup$
– Osaid Ibrahim Bani Salman
Dec 20 '18 at 6:26
$begingroup$
This is exactly right, Ahmad Thanks. With recpect
$endgroup$
– Osaid Ibrahim Bani Salman
Dec 20 '18 at 6:26
$begingroup$
im glad it was helpful @OsaidIbrahimBaniSalman
$endgroup$
– Ahmad Bazzi
Dec 20 '18 at 6:43
$begingroup$
im glad it was helpful @OsaidIbrahimBaniSalman
$endgroup$
– Ahmad Bazzi
Dec 20 '18 at 6:43
add a comment |
$begingroup$
The antiderivatives of $1/x$ are not uniquely determined ! They are given by
$$ln x +C.$$
Forthermore $ ln (2x)= ln 2 + ln x.$
Can you proceed ?
$endgroup$
$begingroup$
This is true. Yes i can. Thanks
$endgroup$
– Osaid Ibrahim Bani Salman
Dec 20 '18 at 6:28
$begingroup$
On a connected domain at least.
$endgroup$
– Math_QED
Dec 20 '18 at 7:00
add a comment |
$begingroup$
The antiderivatives of $1/x$ are not uniquely determined ! They are given by
$$ln x +C.$$
Forthermore $ ln (2x)= ln 2 + ln x.$
Can you proceed ?
$endgroup$
$begingroup$
This is true. Yes i can. Thanks
$endgroup$
– Osaid Ibrahim Bani Salman
Dec 20 '18 at 6:28
$begingroup$
On a connected domain at least.
$endgroup$
– Math_QED
Dec 20 '18 at 7:00
add a comment |
$begingroup$
The antiderivatives of $1/x$ are not uniquely determined ! They are given by
$$ln x +C.$$
Forthermore $ ln (2x)= ln 2 + ln x.$
Can you proceed ?
$endgroup$
The antiderivatives of $1/x$ are not uniquely determined ! They are given by
$$ln x +C.$$
Forthermore $ ln (2x)= ln 2 + ln x.$
Can you proceed ?
answered Dec 20 '18 at 6:18
FredFred
47.2k1849
47.2k1849
$begingroup$
This is true. Yes i can. Thanks
$endgroup$
– Osaid Ibrahim Bani Salman
Dec 20 '18 at 6:28
$begingroup$
On a connected domain at least.
$endgroup$
– Math_QED
Dec 20 '18 at 7:00
add a comment |
$begingroup$
This is true. Yes i can. Thanks
$endgroup$
– Osaid Ibrahim Bani Salman
Dec 20 '18 at 6:28
$begingroup$
On a connected domain at least.
$endgroup$
– Math_QED
Dec 20 '18 at 7:00
$begingroup$
This is true. Yes i can. Thanks
$endgroup$
– Osaid Ibrahim Bani Salman
Dec 20 '18 at 6:28
$begingroup$
This is true. Yes i can. Thanks
$endgroup$
– Osaid Ibrahim Bani Salman
Dec 20 '18 at 6:28
$begingroup$
On a connected domain at least.
$endgroup$
– Math_QED
Dec 20 '18 at 7:00
$begingroup$
On a connected domain at least.
$endgroup$
– Math_QED
Dec 20 '18 at 7:00
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3047221%2fon-differentiating-fx-ln2x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
Antiderivatives are same upto constants.
$endgroup$
– Yadati Kiran
Dec 20 '18 at 6:20