On differentiating $F(x)=ln(2x)$












2












$begingroup$


If we differentiate $F(x)=ln(2x)$ we will get $F'(x) =dfrac2{2x}$ after the shortcut $F'(x)=dfrac1x$, right?



Now if we integrate $F'(x)$ we will get $F(x)=ln(x)$ but also $F(x)=ln(2x)$. This means $ln(2x)=ln(x)$. What happened?










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    Antiderivatives are same upto constants.
    $endgroup$
    – Yadati Kiran
    Dec 20 '18 at 6:20


















2












$begingroup$


If we differentiate $F(x)=ln(2x)$ we will get $F'(x) =dfrac2{2x}$ after the shortcut $F'(x)=dfrac1x$, right?



Now if we integrate $F'(x)$ we will get $F(x)=ln(x)$ but also $F(x)=ln(2x)$. This means $ln(2x)=ln(x)$. What happened?










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    Antiderivatives are same upto constants.
    $endgroup$
    – Yadati Kiran
    Dec 20 '18 at 6:20
















2












2








2


1



$begingroup$


If we differentiate $F(x)=ln(2x)$ we will get $F'(x) =dfrac2{2x}$ after the shortcut $F'(x)=dfrac1x$, right?



Now if we integrate $F'(x)$ we will get $F(x)=ln(x)$ but also $F(x)=ln(2x)$. This means $ln(2x)=ln(x)$. What happened?










share|cite|improve this question











$endgroup$




If we differentiate $F(x)=ln(2x)$ we will get $F'(x) =dfrac2{2x}$ after the shortcut $F'(x)=dfrac1x$, right?



Now if we integrate $F'(x)$ we will get $F(x)=ln(x)$ but also $F(x)=ln(2x)$. This means $ln(2x)=ln(x)$. What happened?







calculus derivatives






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 20 '18 at 6:34









Saad

19.7k92352




19.7k92352










asked Dec 20 '18 at 6:11









Osaid Ibrahim Bani SalmanOsaid Ibrahim Bani Salman

244




244








  • 2




    $begingroup$
    Antiderivatives are same upto constants.
    $endgroup$
    – Yadati Kiran
    Dec 20 '18 at 6:20
















  • 2




    $begingroup$
    Antiderivatives are same upto constants.
    $endgroup$
    – Yadati Kiran
    Dec 20 '18 at 6:20










2




2




$begingroup$
Antiderivatives are same upto constants.
$endgroup$
– Yadati Kiran
Dec 20 '18 at 6:20






$begingroup$
Antiderivatives are same upto constants.
$endgroup$
– Yadati Kiran
Dec 20 '18 at 6:20












3 Answers
3






active

oldest

votes


















3












$begingroup$

When you integrate, there is an arbitrary constant $C$ added. So you only get
$$ln(2x)=ln(x)+C.$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    this is exactly right Bjorn, thanks.
    $endgroup$
    – Osaid Ibrahim Bani Salman
    Dec 20 '18 at 6:25



















3












$begingroup$

But$$F(x)=ln(2x) =ln 2 + ln x$$
So when you integrate back you get $$ln x + C $$
where the constant $C$ should be the $ln 2$ term.






share|cite|improve this answer









$endgroup$









  • 1




    $begingroup$
    This is exactly right, Ahmad Thanks. With recpect
    $endgroup$
    – Osaid Ibrahim Bani Salman
    Dec 20 '18 at 6:26










  • $begingroup$
    im glad it was helpful @OsaidIbrahimBaniSalman
    $endgroup$
    – Ahmad Bazzi
    Dec 20 '18 at 6:43



















2












$begingroup$

The antiderivatives of $1/x$ are not uniquely determined ! They are given by



$$ln x +C.$$



Forthermore $ ln (2x)= ln 2 + ln x.$



Can you proceed ?






share|cite|improve this answer









$endgroup$













  • $begingroup$
    This is true. Yes i can. Thanks
    $endgroup$
    – Osaid Ibrahim Bani Salman
    Dec 20 '18 at 6:28










  • $begingroup$
    On a connected domain at least.
    $endgroup$
    – Math_QED
    Dec 20 '18 at 7:00











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3047221%2fon-differentiating-fx-ln2x%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























3 Answers
3






active

oldest

votes








3 Answers
3






active

oldest

votes









active

oldest

votes






active

oldest

votes









3












$begingroup$

When you integrate, there is an arbitrary constant $C$ added. So you only get
$$ln(2x)=ln(x)+C.$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    this is exactly right Bjorn, thanks.
    $endgroup$
    – Osaid Ibrahim Bani Salman
    Dec 20 '18 at 6:25
















3












$begingroup$

When you integrate, there is an arbitrary constant $C$ added. So you only get
$$ln(2x)=ln(x)+C.$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    this is exactly right Bjorn, thanks.
    $endgroup$
    – Osaid Ibrahim Bani Salman
    Dec 20 '18 at 6:25














3












3








3





$begingroup$

When you integrate, there is an arbitrary constant $C$ added. So you only get
$$ln(2x)=ln(x)+C.$$






share|cite|improve this answer









$endgroup$



When you integrate, there is an arbitrary constant $C$ added. So you only get
$$ln(2x)=ln(x)+C.$$







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Dec 20 '18 at 6:13









Bjørn Kjos-HanssenBjørn Kjos-Hanssen

2,097918




2,097918












  • $begingroup$
    this is exactly right Bjorn, thanks.
    $endgroup$
    – Osaid Ibrahim Bani Salman
    Dec 20 '18 at 6:25


















  • $begingroup$
    this is exactly right Bjorn, thanks.
    $endgroup$
    – Osaid Ibrahim Bani Salman
    Dec 20 '18 at 6:25
















$begingroup$
this is exactly right Bjorn, thanks.
$endgroup$
– Osaid Ibrahim Bani Salman
Dec 20 '18 at 6:25




$begingroup$
this is exactly right Bjorn, thanks.
$endgroup$
– Osaid Ibrahim Bani Salman
Dec 20 '18 at 6:25











3












$begingroup$

But$$F(x)=ln(2x) =ln 2 + ln x$$
So when you integrate back you get $$ln x + C $$
where the constant $C$ should be the $ln 2$ term.






share|cite|improve this answer









$endgroup$









  • 1




    $begingroup$
    This is exactly right, Ahmad Thanks. With recpect
    $endgroup$
    – Osaid Ibrahim Bani Salman
    Dec 20 '18 at 6:26










  • $begingroup$
    im glad it was helpful @OsaidIbrahimBaniSalman
    $endgroup$
    – Ahmad Bazzi
    Dec 20 '18 at 6:43
















3












$begingroup$

But$$F(x)=ln(2x) =ln 2 + ln x$$
So when you integrate back you get $$ln x + C $$
where the constant $C$ should be the $ln 2$ term.






share|cite|improve this answer









$endgroup$









  • 1




    $begingroup$
    This is exactly right, Ahmad Thanks. With recpect
    $endgroup$
    – Osaid Ibrahim Bani Salman
    Dec 20 '18 at 6:26










  • $begingroup$
    im glad it was helpful @OsaidIbrahimBaniSalman
    $endgroup$
    – Ahmad Bazzi
    Dec 20 '18 at 6:43














3












3








3





$begingroup$

But$$F(x)=ln(2x) =ln 2 + ln x$$
So when you integrate back you get $$ln x + C $$
where the constant $C$ should be the $ln 2$ term.






share|cite|improve this answer









$endgroup$



But$$F(x)=ln(2x) =ln 2 + ln x$$
So when you integrate back you get $$ln x + C $$
where the constant $C$ should be the $ln 2$ term.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Dec 20 '18 at 6:15









Ahmad BazziAhmad Bazzi

8,3622824




8,3622824








  • 1




    $begingroup$
    This is exactly right, Ahmad Thanks. With recpect
    $endgroup$
    – Osaid Ibrahim Bani Salman
    Dec 20 '18 at 6:26










  • $begingroup$
    im glad it was helpful @OsaidIbrahimBaniSalman
    $endgroup$
    – Ahmad Bazzi
    Dec 20 '18 at 6:43














  • 1




    $begingroup$
    This is exactly right, Ahmad Thanks. With recpect
    $endgroup$
    – Osaid Ibrahim Bani Salman
    Dec 20 '18 at 6:26










  • $begingroup$
    im glad it was helpful @OsaidIbrahimBaniSalman
    $endgroup$
    – Ahmad Bazzi
    Dec 20 '18 at 6:43








1




1




$begingroup$
This is exactly right, Ahmad Thanks. With recpect
$endgroup$
– Osaid Ibrahim Bani Salman
Dec 20 '18 at 6:26




$begingroup$
This is exactly right, Ahmad Thanks. With recpect
$endgroup$
– Osaid Ibrahim Bani Salman
Dec 20 '18 at 6:26












$begingroup$
im glad it was helpful @OsaidIbrahimBaniSalman
$endgroup$
– Ahmad Bazzi
Dec 20 '18 at 6:43




$begingroup$
im glad it was helpful @OsaidIbrahimBaniSalman
$endgroup$
– Ahmad Bazzi
Dec 20 '18 at 6:43











2












$begingroup$

The antiderivatives of $1/x$ are not uniquely determined ! They are given by



$$ln x +C.$$



Forthermore $ ln (2x)= ln 2 + ln x.$



Can you proceed ?






share|cite|improve this answer









$endgroup$













  • $begingroup$
    This is true. Yes i can. Thanks
    $endgroup$
    – Osaid Ibrahim Bani Salman
    Dec 20 '18 at 6:28










  • $begingroup$
    On a connected domain at least.
    $endgroup$
    – Math_QED
    Dec 20 '18 at 7:00
















2












$begingroup$

The antiderivatives of $1/x$ are not uniquely determined ! They are given by



$$ln x +C.$$



Forthermore $ ln (2x)= ln 2 + ln x.$



Can you proceed ?






share|cite|improve this answer









$endgroup$













  • $begingroup$
    This is true. Yes i can. Thanks
    $endgroup$
    – Osaid Ibrahim Bani Salman
    Dec 20 '18 at 6:28










  • $begingroup$
    On a connected domain at least.
    $endgroup$
    – Math_QED
    Dec 20 '18 at 7:00














2












2








2





$begingroup$

The antiderivatives of $1/x$ are not uniquely determined ! They are given by



$$ln x +C.$$



Forthermore $ ln (2x)= ln 2 + ln x.$



Can you proceed ?






share|cite|improve this answer









$endgroup$



The antiderivatives of $1/x$ are not uniquely determined ! They are given by



$$ln x +C.$$



Forthermore $ ln (2x)= ln 2 + ln x.$



Can you proceed ?







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Dec 20 '18 at 6:18









FredFred

47.2k1849




47.2k1849












  • $begingroup$
    This is true. Yes i can. Thanks
    $endgroup$
    – Osaid Ibrahim Bani Salman
    Dec 20 '18 at 6:28










  • $begingroup$
    On a connected domain at least.
    $endgroup$
    – Math_QED
    Dec 20 '18 at 7:00


















  • $begingroup$
    This is true. Yes i can. Thanks
    $endgroup$
    – Osaid Ibrahim Bani Salman
    Dec 20 '18 at 6:28










  • $begingroup$
    On a connected domain at least.
    $endgroup$
    – Math_QED
    Dec 20 '18 at 7:00
















$begingroup$
This is true. Yes i can. Thanks
$endgroup$
– Osaid Ibrahim Bani Salman
Dec 20 '18 at 6:28




$begingroup$
This is true. Yes i can. Thanks
$endgroup$
– Osaid Ibrahim Bani Salman
Dec 20 '18 at 6:28












$begingroup$
On a connected domain at least.
$endgroup$
– Math_QED
Dec 20 '18 at 7:00




$begingroup$
On a connected domain at least.
$endgroup$
– Math_QED
Dec 20 '18 at 7:00


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3047221%2fon-differentiating-fx-ln2x%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Aardman Animations

Are they similar matrix

“minimization” problem in Euclidean space related to orthonormal basis