Recurrence relation/with limit
Let $F_{n+1}=F_{n-1}+F_{n-2}$ for $n in mathbb{N}$ with $n geq 2$
$F_0:=0$ and $F_1:=1$.
How to compute
$limlimits_{ntoinfty}frac{F_{n-1}}{F_{n+1}}$?
I tried to use Binet's formula:
$limlimits_{ntoinfty}frac{F_{n-1}}{F_{n+1}}=limlimits_{ntoinfty}frac{frac{1}{sqrt{5}}(xi^{n-1}-phi^{n-1})}{frac{1}{sqrt{5}}(xi^{n+1}-phi^{n+1})}=limlimits_{xtoinfty}frac{xi^{n-1}(1-frac{phi^{n-1}}{xi^{n-1}})}{xi^{n+1}(1-frac{phi^{n+1}}{xi^{n+1}})}$
But I don't know what to do next.
I suppose $xi^{n+1}(1-frac{phi^{n+1}}{xi^{n+1}})=xi$ but what about ${xi^{n-1}(1-frac{phi^{n-1}}{xi^{n-1}})}$?
recurrence-relations
|
show 2 more comments
Let $F_{n+1}=F_{n-1}+F_{n-2}$ for $n in mathbb{N}$ with $n geq 2$
$F_0:=0$ and $F_1:=1$.
How to compute
$limlimits_{ntoinfty}frac{F_{n-1}}{F_{n+1}}$?
I tried to use Binet's formula:
$limlimits_{ntoinfty}frac{F_{n-1}}{F_{n+1}}=limlimits_{ntoinfty}frac{frac{1}{sqrt{5}}(xi^{n-1}-phi^{n-1})}{frac{1}{sqrt{5}}(xi^{n+1}-phi^{n+1})}=limlimits_{xtoinfty}frac{xi^{n-1}(1-frac{phi^{n-1}}{xi^{n-1}})}{xi^{n+1}(1-frac{phi^{n+1}}{xi^{n+1}})}$
But I don't know what to do next.
I suppose $xi^{n+1}(1-frac{phi^{n+1}}{xi^{n+1}})=xi$ but what about ${xi^{n-1}(1-frac{phi^{n-1}}{xi^{n-1}})}$?
recurrence-relations
How do you prove existence of $limlimits_{ntoinfty}frac{F_{n-1}}{F_{n+1}}$.
– Yadati Kiran
Nov 27 at 12:07
2
Are you sure it's $$F_{n+1} = F_{n-1} + F_{n-2}$$ and not $$F_n=F_{n-1}+F_{n-2}?$$
– 5xum
Nov 27 at 12:08
5
What is $F_2{}$?
– Arthur
Nov 27 at 12:11
3
In that case, how do you evaluate $displaystyle F_{2}$ ?.
– Felix Marin
Nov 27 at 17:21
1
Binet's formula is only valid if $F_n=F_{n-1}+F_{n-2}$.
– Teepeemm
Nov 27 at 18:07
|
show 2 more comments
Let $F_{n+1}=F_{n-1}+F_{n-2}$ for $n in mathbb{N}$ with $n geq 2$
$F_0:=0$ and $F_1:=1$.
How to compute
$limlimits_{ntoinfty}frac{F_{n-1}}{F_{n+1}}$?
I tried to use Binet's formula:
$limlimits_{ntoinfty}frac{F_{n-1}}{F_{n+1}}=limlimits_{ntoinfty}frac{frac{1}{sqrt{5}}(xi^{n-1}-phi^{n-1})}{frac{1}{sqrt{5}}(xi^{n+1}-phi^{n+1})}=limlimits_{xtoinfty}frac{xi^{n-1}(1-frac{phi^{n-1}}{xi^{n-1}})}{xi^{n+1}(1-frac{phi^{n+1}}{xi^{n+1}})}$
But I don't know what to do next.
I suppose $xi^{n+1}(1-frac{phi^{n+1}}{xi^{n+1}})=xi$ but what about ${xi^{n-1}(1-frac{phi^{n-1}}{xi^{n-1}})}$?
recurrence-relations
Let $F_{n+1}=F_{n-1}+F_{n-2}$ for $n in mathbb{N}$ with $n geq 2$
$F_0:=0$ and $F_1:=1$.
How to compute
$limlimits_{ntoinfty}frac{F_{n-1}}{F_{n+1}}$?
I tried to use Binet's formula:
$limlimits_{ntoinfty}frac{F_{n-1}}{F_{n+1}}=limlimits_{ntoinfty}frac{frac{1}{sqrt{5}}(xi^{n-1}-phi^{n-1})}{frac{1}{sqrt{5}}(xi^{n+1}-phi^{n+1})}=limlimits_{xtoinfty}frac{xi^{n-1}(1-frac{phi^{n-1}}{xi^{n-1}})}{xi^{n+1}(1-frac{phi^{n+1}}{xi^{n+1}})}$
But I don't know what to do next.
I suppose $xi^{n+1}(1-frac{phi^{n+1}}{xi^{n+1}})=xi$ but what about ${xi^{n-1}(1-frac{phi^{n-1}}{xi^{n-1}})}$?
recurrence-relations
recurrence-relations
edited Nov 27 at 12:37
Mostafa Ayaz
13.7k3836
13.7k3836
asked Nov 27 at 12:05
Nekarts
234
234
How do you prove existence of $limlimits_{ntoinfty}frac{F_{n-1}}{F_{n+1}}$.
– Yadati Kiran
Nov 27 at 12:07
2
Are you sure it's $$F_{n+1} = F_{n-1} + F_{n-2}$$ and not $$F_n=F_{n-1}+F_{n-2}?$$
– 5xum
Nov 27 at 12:08
5
What is $F_2{}$?
– Arthur
Nov 27 at 12:11
3
In that case, how do you evaluate $displaystyle F_{2}$ ?.
– Felix Marin
Nov 27 at 17:21
1
Binet's formula is only valid if $F_n=F_{n-1}+F_{n-2}$.
– Teepeemm
Nov 27 at 18:07
|
show 2 more comments
How do you prove existence of $limlimits_{ntoinfty}frac{F_{n-1}}{F_{n+1}}$.
– Yadati Kiran
Nov 27 at 12:07
2
Are you sure it's $$F_{n+1} = F_{n-1} + F_{n-2}$$ and not $$F_n=F_{n-1}+F_{n-2}?$$
– 5xum
Nov 27 at 12:08
5
What is $F_2{}$?
– Arthur
Nov 27 at 12:11
3
In that case, how do you evaluate $displaystyle F_{2}$ ?.
– Felix Marin
Nov 27 at 17:21
1
Binet's formula is only valid if $F_n=F_{n-1}+F_{n-2}$.
– Teepeemm
Nov 27 at 18:07
How do you prove existence of $limlimits_{ntoinfty}frac{F_{n-1}}{F_{n+1}}$.
– Yadati Kiran
Nov 27 at 12:07
How do you prove existence of $limlimits_{ntoinfty}frac{F_{n-1}}{F_{n+1}}$.
– Yadati Kiran
Nov 27 at 12:07
2
2
Are you sure it's $$F_{n+1} = F_{n-1} + F_{n-2}$$ and not $$F_n=F_{n-1}+F_{n-2}?$$
– 5xum
Nov 27 at 12:08
Are you sure it's $$F_{n+1} = F_{n-1} + F_{n-2}$$ and not $$F_n=F_{n-1}+F_{n-2}?$$
– 5xum
Nov 27 at 12:08
5
5
What is $F_2{}$?
– Arthur
Nov 27 at 12:11
What is $F_2{}$?
– Arthur
Nov 27 at 12:11
3
3
In that case, how do you evaluate $displaystyle F_{2}$ ?.
– Felix Marin
Nov 27 at 17:21
In that case, how do you evaluate $displaystyle F_{2}$ ?.
– Felix Marin
Nov 27 at 17:21
1
1
Binet's formula is only valid if $F_n=F_{n-1}+F_{n-2}$.
– Teepeemm
Nov 27 at 18:07
Binet's formula is only valid if $F_n=F_{n-1}+F_{n-2}$.
– Teepeemm
Nov 27 at 18:07
|
show 2 more comments
4 Answers
4
active
oldest
votes
We have$$limlimits_{ntoinfty}frac{xi^{n-1}(1-frac{phi^{n-1}}{xi^{n-1}})}{xi^{n+1}(1-frac{phi^{n+1}}{xi^{n+1}})}={1over xi ^2}lim_{nto infty}{1-left({phiover xi}right)^{n-1}over 1-left({phiover xi}right)^{n+1}}$$where $${phiover xi}={{1-sqrt 5over 2}over {1+sqrt 5over 2}}={1-sqrt 5over 1+sqrt 5}$$therefore $-1<{phi over xi}<0$and we obtain $$lim_{nto infty}{1-left({phiover xi}right)^{n-1}over 1-left({phiover xi}right)^{n+1}}={1over xi ^2}={3-sqrt 5over 2}$$
Whether intentionally or not, OP is not using the Fibonacci sequence, so Binet's formula is not valid.
– Teepeemm
Dec 3 at 16:20
It is a Fibonacci sequence. $0,1,1,2,3,5,8,cdots$
– Mostafa Ayaz
Dec 3 at 16:22
Not if $F_2=15$. Double check the comments on the original post.
– Teepeemm
Dec 3 at 16:23
add a comment |
$$F_{n+1}=F_n+F_{n-1}$$
$$impliesdfrac{F_{n+1}}{F_n}=dfrac{F_{n-1}}{F_n}+1$$
If $lim_{ntoinfty}dfrac{F_{n+1}}{F_n}=a,$ we have $$a=dfrac1a+1iff a^2-a-1=0, a=?$$
Finally $lim_{ntoinfty}dfrac{F_{n+1}}{F_{n-1}}=lim_{ntoinfty}dfrac{F_{n+1}}{F_n}cdotlim_{ntoinfty}dfrac{F_n}{F_{n-1}}=a^2$
OP specified that $F_{n+1}=F_{n-1}+F_{n-2}$.
– Teepeemm
Dec 3 at 16:21
add a comment |
After$$lim_{ntoinfty}frac{F_{n-1}}{F_{n+1}}=lim_{ntoinfty}frac{frac{1}{sqrt{5}}left(xi^{n-1}-phi^{n-1}right)}{frac{1}{sqrt{5}}left(xi^{n+1}-phi^{n+1}right)},$$you should have obtained$$lim_{ntoinfty}frac{xi^{n-1}left(1-frac{phi^{n-1}}{xi^{n-1}}right)}{xi^{n+1}left(1-frac{phi^{n+1}}{xi^{n+1}}right)},$$which is equal to$$frac1{xi^2}lim_{ntoinfty}frac{1-frac{phi^{n-1}}{xi^{n-1}}}{1-frac{phi^{n+1}}{xi^{n+1}}}=frac1{xi^2}.$$
Whether intentionally or not, OP is not using the Fibonacci sequence, so Binet's formula is not valid.
– Teepeemm
Dec 3 at 16:20
add a comment |
(Note that the sequence is ill-posed as you haven't specified $F_2$. Nevertheless, we may proceed regardless of the value.)
Let's suppose that $F_n=alpha^n$. Then the recurrence relation tells us that $alpha^{n+1}=alpha^{n-1}+alpha^{n-2}$, so that $alpha^3-alpha-1=0$. Because the recurrence is linear with three degrees of freedom, all solutions will be of the form $F_n=c_1alpha_1+c_2alpha_2+c_3alpha_3$, where $c_i$ are constants that depend on $F_0$, $F_1$, and $F_2$, and $alpha_i$ are the roots of $alpha^3-alpha-1=0$.
Luckily, this equation has a unique root with magnitude greater than 1, which is approximately 1.32. Call this $alpha_*$. Then
$$lim_{ntoinfty}frac{F_{n-1}}{F_{n+1}}=lim_{ntoinfty}frac{F_{n-1}}{F_n}lim_{ntoinfty}frac{F_n}{F_{n+1}}=alpha_*^{-2}approx.57.$$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3015694%2frecurrence-relation-with-limit%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
We have$$limlimits_{ntoinfty}frac{xi^{n-1}(1-frac{phi^{n-1}}{xi^{n-1}})}{xi^{n+1}(1-frac{phi^{n+1}}{xi^{n+1}})}={1over xi ^2}lim_{nto infty}{1-left({phiover xi}right)^{n-1}over 1-left({phiover xi}right)^{n+1}}$$where $${phiover xi}={{1-sqrt 5over 2}over {1+sqrt 5over 2}}={1-sqrt 5over 1+sqrt 5}$$therefore $-1<{phi over xi}<0$and we obtain $$lim_{nto infty}{1-left({phiover xi}right)^{n-1}over 1-left({phiover xi}right)^{n+1}}={1over xi ^2}={3-sqrt 5over 2}$$
Whether intentionally or not, OP is not using the Fibonacci sequence, so Binet's formula is not valid.
– Teepeemm
Dec 3 at 16:20
It is a Fibonacci sequence. $0,1,1,2,3,5,8,cdots$
– Mostafa Ayaz
Dec 3 at 16:22
Not if $F_2=15$. Double check the comments on the original post.
– Teepeemm
Dec 3 at 16:23
add a comment |
We have$$limlimits_{ntoinfty}frac{xi^{n-1}(1-frac{phi^{n-1}}{xi^{n-1}})}{xi^{n+1}(1-frac{phi^{n+1}}{xi^{n+1}})}={1over xi ^2}lim_{nto infty}{1-left({phiover xi}right)^{n-1}over 1-left({phiover xi}right)^{n+1}}$$where $${phiover xi}={{1-sqrt 5over 2}over {1+sqrt 5over 2}}={1-sqrt 5over 1+sqrt 5}$$therefore $-1<{phi over xi}<0$and we obtain $$lim_{nto infty}{1-left({phiover xi}right)^{n-1}over 1-left({phiover xi}right)^{n+1}}={1over xi ^2}={3-sqrt 5over 2}$$
Whether intentionally or not, OP is not using the Fibonacci sequence, so Binet's formula is not valid.
– Teepeemm
Dec 3 at 16:20
It is a Fibonacci sequence. $0,1,1,2,3,5,8,cdots$
– Mostafa Ayaz
Dec 3 at 16:22
Not if $F_2=15$. Double check the comments on the original post.
– Teepeemm
Dec 3 at 16:23
add a comment |
We have$$limlimits_{ntoinfty}frac{xi^{n-1}(1-frac{phi^{n-1}}{xi^{n-1}})}{xi^{n+1}(1-frac{phi^{n+1}}{xi^{n+1}})}={1over xi ^2}lim_{nto infty}{1-left({phiover xi}right)^{n-1}over 1-left({phiover xi}right)^{n+1}}$$where $${phiover xi}={{1-sqrt 5over 2}over {1+sqrt 5over 2}}={1-sqrt 5over 1+sqrt 5}$$therefore $-1<{phi over xi}<0$and we obtain $$lim_{nto infty}{1-left({phiover xi}right)^{n-1}over 1-left({phiover xi}right)^{n+1}}={1over xi ^2}={3-sqrt 5over 2}$$
We have$$limlimits_{ntoinfty}frac{xi^{n-1}(1-frac{phi^{n-1}}{xi^{n-1}})}{xi^{n+1}(1-frac{phi^{n+1}}{xi^{n+1}})}={1over xi ^2}lim_{nto infty}{1-left({phiover xi}right)^{n-1}over 1-left({phiover xi}right)^{n+1}}$$where $${phiover xi}={{1-sqrt 5over 2}over {1+sqrt 5over 2}}={1-sqrt 5over 1+sqrt 5}$$therefore $-1<{phi over xi}<0$and we obtain $$lim_{nto infty}{1-left({phiover xi}right)^{n-1}over 1-left({phiover xi}right)^{n+1}}={1over xi ^2}={3-sqrt 5over 2}$$
answered Nov 27 at 12:34
Mostafa Ayaz
13.7k3836
13.7k3836
Whether intentionally or not, OP is not using the Fibonacci sequence, so Binet's formula is not valid.
– Teepeemm
Dec 3 at 16:20
It is a Fibonacci sequence. $0,1,1,2,3,5,8,cdots$
– Mostafa Ayaz
Dec 3 at 16:22
Not if $F_2=15$. Double check the comments on the original post.
– Teepeemm
Dec 3 at 16:23
add a comment |
Whether intentionally or not, OP is not using the Fibonacci sequence, so Binet's formula is not valid.
– Teepeemm
Dec 3 at 16:20
It is a Fibonacci sequence. $0,1,1,2,3,5,8,cdots$
– Mostafa Ayaz
Dec 3 at 16:22
Not if $F_2=15$. Double check the comments on the original post.
– Teepeemm
Dec 3 at 16:23
Whether intentionally or not, OP is not using the Fibonacci sequence, so Binet's formula is not valid.
– Teepeemm
Dec 3 at 16:20
Whether intentionally or not, OP is not using the Fibonacci sequence, so Binet's formula is not valid.
– Teepeemm
Dec 3 at 16:20
It is a Fibonacci sequence. $0,1,1,2,3,5,8,cdots$
– Mostafa Ayaz
Dec 3 at 16:22
It is a Fibonacci sequence. $0,1,1,2,3,5,8,cdots$
– Mostafa Ayaz
Dec 3 at 16:22
Not if $F_2=15$. Double check the comments on the original post.
– Teepeemm
Dec 3 at 16:23
Not if $F_2=15$. Double check the comments on the original post.
– Teepeemm
Dec 3 at 16:23
add a comment |
$$F_{n+1}=F_n+F_{n-1}$$
$$impliesdfrac{F_{n+1}}{F_n}=dfrac{F_{n-1}}{F_n}+1$$
If $lim_{ntoinfty}dfrac{F_{n+1}}{F_n}=a,$ we have $$a=dfrac1a+1iff a^2-a-1=0, a=?$$
Finally $lim_{ntoinfty}dfrac{F_{n+1}}{F_{n-1}}=lim_{ntoinfty}dfrac{F_{n+1}}{F_n}cdotlim_{ntoinfty}dfrac{F_n}{F_{n-1}}=a^2$
OP specified that $F_{n+1}=F_{n-1}+F_{n-2}$.
– Teepeemm
Dec 3 at 16:21
add a comment |
$$F_{n+1}=F_n+F_{n-1}$$
$$impliesdfrac{F_{n+1}}{F_n}=dfrac{F_{n-1}}{F_n}+1$$
If $lim_{ntoinfty}dfrac{F_{n+1}}{F_n}=a,$ we have $$a=dfrac1a+1iff a^2-a-1=0, a=?$$
Finally $lim_{ntoinfty}dfrac{F_{n+1}}{F_{n-1}}=lim_{ntoinfty}dfrac{F_{n+1}}{F_n}cdotlim_{ntoinfty}dfrac{F_n}{F_{n-1}}=a^2$
OP specified that $F_{n+1}=F_{n-1}+F_{n-2}$.
– Teepeemm
Dec 3 at 16:21
add a comment |
$$F_{n+1}=F_n+F_{n-1}$$
$$impliesdfrac{F_{n+1}}{F_n}=dfrac{F_{n-1}}{F_n}+1$$
If $lim_{ntoinfty}dfrac{F_{n+1}}{F_n}=a,$ we have $$a=dfrac1a+1iff a^2-a-1=0, a=?$$
Finally $lim_{ntoinfty}dfrac{F_{n+1}}{F_{n-1}}=lim_{ntoinfty}dfrac{F_{n+1}}{F_n}cdotlim_{ntoinfty}dfrac{F_n}{F_{n-1}}=a^2$
$$F_{n+1}=F_n+F_{n-1}$$
$$impliesdfrac{F_{n+1}}{F_n}=dfrac{F_{n-1}}{F_n}+1$$
If $lim_{ntoinfty}dfrac{F_{n+1}}{F_n}=a,$ we have $$a=dfrac1a+1iff a^2-a-1=0, a=?$$
Finally $lim_{ntoinfty}dfrac{F_{n+1}}{F_{n-1}}=lim_{ntoinfty}dfrac{F_{n+1}}{F_n}cdotlim_{ntoinfty}dfrac{F_n}{F_{n-1}}=a^2$
answered Nov 27 at 13:06
lab bhattacharjee
223k15156274
223k15156274
OP specified that $F_{n+1}=F_{n-1}+F_{n-2}$.
– Teepeemm
Dec 3 at 16:21
add a comment |
OP specified that $F_{n+1}=F_{n-1}+F_{n-2}$.
– Teepeemm
Dec 3 at 16:21
OP specified that $F_{n+1}=F_{n-1}+F_{n-2}$.
– Teepeemm
Dec 3 at 16:21
OP specified that $F_{n+1}=F_{n-1}+F_{n-2}$.
– Teepeemm
Dec 3 at 16:21
add a comment |
After$$lim_{ntoinfty}frac{F_{n-1}}{F_{n+1}}=lim_{ntoinfty}frac{frac{1}{sqrt{5}}left(xi^{n-1}-phi^{n-1}right)}{frac{1}{sqrt{5}}left(xi^{n+1}-phi^{n+1}right)},$$you should have obtained$$lim_{ntoinfty}frac{xi^{n-1}left(1-frac{phi^{n-1}}{xi^{n-1}}right)}{xi^{n+1}left(1-frac{phi^{n+1}}{xi^{n+1}}right)},$$which is equal to$$frac1{xi^2}lim_{ntoinfty}frac{1-frac{phi^{n-1}}{xi^{n-1}}}{1-frac{phi^{n+1}}{xi^{n+1}}}=frac1{xi^2}.$$
Whether intentionally or not, OP is not using the Fibonacci sequence, so Binet's formula is not valid.
– Teepeemm
Dec 3 at 16:20
add a comment |
After$$lim_{ntoinfty}frac{F_{n-1}}{F_{n+1}}=lim_{ntoinfty}frac{frac{1}{sqrt{5}}left(xi^{n-1}-phi^{n-1}right)}{frac{1}{sqrt{5}}left(xi^{n+1}-phi^{n+1}right)},$$you should have obtained$$lim_{ntoinfty}frac{xi^{n-1}left(1-frac{phi^{n-1}}{xi^{n-1}}right)}{xi^{n+1}left(1-frac{phi^{n+1}}{xi^{n+1}}right)},$$which is equal to$$frac1{xi^2}lim_{ntoinfty}frac{1-frac{phi^{n-1}}{xi^{n-1}}}{1-frac{phi^{n+1}}{xi^{n+1}}}=frac1{xi^2}.$$
Whether intentionally or not, OP is not using the Fibonacci sequence, so Binet's formula is not valid.
– Teepeemm
Dec 3 at 16:20
add a comment |
After$$lim_{ntoinfty}frac{F_{n-1}}{F_{n+1}}=lim_{ntoinfty}frac{frac{1}{sqrt{5}}left(xi^{n-1}-phi^{n-1}right)}{frac{1}{sqrt{5}}left(xi^{n+1}-phi^{n+1}right)},$$you should have obtained$$lim_{ntoinfty}frac{xi^{n-1}left(1-frac{phi^{n-1}}{xi^{n-1}}right)}{xi^{n+1}left(1-frac{phi^{n+1}}{xi^{n+1}}right)},$$which is equal to$$frac1{xi^2}lim_{ntoinfty}frac{1-frac{phi^{n-1}}{xi^{n-1}}}{1-frac{phi^{n+1}}{xi^{n+1}}}=frac1{xi^2}.$$
After$$lim_{ntoinfty}frac{F_{n-1}}{F_{n+1}}=lim_{ntoinfty}frac{frac{1}{sqrt{5}}left(xi^{n-1}-phi^{n-1}right)}{frac{1}{sqrt{5}}left(xi^{n+1}-phi^{n+1}right)},$$you should have obtained$$lim_{ntoinfty}frac{xi^{n-1}left(1-frac{phi^{n-1}}{xi^{n-1}}right)}{xi^{n+1}left(1-frac{phi^{n+1}}{xi^{n+1}}right)},$$which is equal to$$frac1{xi^2}lim_{ntoinfty}frac{1-frac{phi^{n-1}}{xi^{n-1}}}{1-frac{phi^{n+1}}{xi^{n+1}}}=frac1{xi^2}.$$
answered Nov 27 at 12:12
José Carlos Santos
150k22120221
150k22120221
Whether intentionally or not, OP is not using the Fibonacci sequence, so Binet's formula is not valid.
– Teepeemm
Dec 3 at 16:20
add a comment |
Whether intentionally or not, OP is not using the Fibonacci sequence, so Binet's formula is not valid.
– Teepeemm
Dec 3 at 16:20
Whether intentionally or not, OP is not using the Fibonacci sequence, so Binet's formula is not valid.
– Teepeemm
Dec 3 at 16:20
Whether intentionally or not, OP is not using the Fibonacci sequence, so Binet's formula is not valid.
– Teepeemm
Dec 3 at 16:20
add a comment |
(Note that the sequence is ill-posed as you haven't specified $F_2$. Nevertheless, we may proceed regardless of the value.)
Let's suppose that $F_n=alpha^n$. Then the recurrence relation tells us that $alpha^{n+1}=alpha^{n-1}+alpha^{n-2}$, so that $alpha^3-alpha-1=0$. Because the recurrence is linear with three degrees of freedom, all solutions will be of the form $F_n=c_1alpha_1+c_2alpha_2+c_3alpha_3$, where $c_i$ are constants that depend on $F_0$, $F_1$, and $F_2$, and $alpha_i$ are the roots of $alpha^3-alpha-1=0$.
Luckily, this equation has a unique root with magnitude greater than 1, which is approximately 1.32. Call this $alpha_*$. Then
$$lim_{ntoinfty}frac{F_{n-1}}{F_{n+1}}=lim_{ntoinfty}frac{F_{n-1}}{F_n}lim_{ntoinfty}frac{F_n}{F_{n+1}}=alpha_*^{-2}approx.57.$$
add a comment |
(Note that the sequence is ill-posed as you haven't specified $F_2$. Nevertheless, we may proceed regardless of the value.)
Let's suppose that $F_n=alpha^n$. Then the recurrence relation tells us that $alpha^{n+1}=alpha^{n-1}+alpha^{n-2}$, so that $alpha^3-alpha-1=0$. Because the recurrence is linear with three degrees of freedom, all solutions will be of the form $F_n=c_1alpha_1+c_2alpha_2+c_3alpha_3$, where $c_i$ are constants that depend on $F_0$, $F_1$, and $F_2$, and $alpha_i$ are the roots of $alpha^3-alpha-1=0$.
Luckily, this equation has a unique root with magnitude greater than 1, which is approximately 1.32. Call this $alpha_*$. Then
$$lim_{ntoinfty}frac{F_{n-1}}{F_{n+1}}=lim_{ntoinfty}frac{F_{n-1}}{F_n}lim_{ntoinfty}frac{F_n}{F_{n+1}}=alpha_*^{-2}approx.57.$$
add a comment |
(Note that the sequence is ill-posed as you haven't specified $F_2$. Nevertheless, we may proceed regardless of the value.)
Let's suppose that $F_n=alpha^n$. Then the recurrence relation tells us that $alpha^{n+1}=alpha^{n-1}+alpha^{n-2}$, so that $alpha^3-alpha-1=0$. Because the recurrence is linear with three degrees of freedom, all solutions will be of the form $F_n=c_1alpha_1+c_2alpha_2+c_3alpha_3$, where $c_i$ are constants that depend on $F_0$, $F_1$, and $F_2$, and $alpha_i$ are the roots of $alpha^3-alpha-1=0$.
Luckily, this equation has a unique root with magnitude greater than 1, which is approximately 1.32. Call this $alpha_*$. Then
$$lim_{ntoinfty}frac{F_{n-1}}{F_{n+1}}=lim_{ntoinfty}frac{F_{n-1}}{F_n}lim_{ntoinfty}frac{F_n}{F_{n+1}}=alpha_*^{-2}approx.57.$$
(Note that the sequence is ill-posed as you haven't specified $F_2$. Nevertheless, we may proceed regardless of the value.)
Let's suppose that $F_n=alpha^n$. Then the recurrence relation tells us that $alpha^{n+1}=alpha^{n-1}+alpha^{n-2}$, so that $alpha^3-alpha-1=0$. Because the recurrence is linear with three degrees of freedom, all solutions will be of the form $F_n=c_1alpha_1+c_2alpha_2+c_3alpha_3$, where $c_i$ are constants that depend on $F_0$, $F_1$, and $F_2$, and $alpha_i$ are the roots of $alpha^3-alpha-1=0$.
Luckily, this equation has a unique root with magnitude greater than 1, which is approximately 1.32. Call this $alpha_*$. Then
$$lim_{ntoinfty}frac{F_{n-1}}{F_{n+1}}=lim_{ntoinfty}frac{F_{n-1}}{F_n}lim_{ntoinfty}frac{F_n}{F_{n+1}}=alpha_*^{-2}approx.57.$$
answered Dec 3 at 16:46
Teepeemm
69259
69259
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3015694%2frecurrence-relation-with-limit%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
How do you prove existence of $limlimits_{ntoinfty}frac{F_{n-1}}{F_{n+1}}$.
– Yadati Kiran
Nov 27 at 12:07
2
Are you sure it's $$F_{n+1} = F_{n-1} + F_{n-2}$$ and not $$F_n=F_{n-1}+F_{n-2}?$$
– 5xum
Nov 27 at 12:08
5
What is $F_2{}$?
– Arthur
Nov 27 at 12:11
3
In that case, how do you evaluate $displaystyle F_{2}$ ?.
– Felix Marin
Nov 27 at 17:21
1
Binet's formula is only valid if $F_n=F_{n-1}+F_{n-2}$.
– Teepeemm
Nov 27 at 18:07