Prove an equality of Fourier series.












0












$begingroup$


Consider the function:



$f(x)= left{ begin{array}{lcc}
frac{3x}{2} & if & 0leq x leq frac{pi}{3} \
\ frac{pi}{2} & si & frac{pi}3 < x < frac{2pi}3 \
\ frac{3(pi - x)}{2} & si & frac{2pi}{3}leq x leq pi
end{array}
right.$



Prove



$$f(x)=sum_{i=1}^inftyfrac{sin(2n-1)pi}{3(2n-1)^2}times sin(2n-1)x,,,, text{for 0$leq$x$leqpi$ }$$



My attempt:



We need find the representation of fourier series in $sin$ of $f$.



As $f$ is continuous then



$$f(x)=sum_{i=1}^nb_ntimes sin(nx)$ with $xin[0,pi]$$



where,



$$b_n=frac{2}{pi}int_{0}^{pi} f(x)times sin(nx)dx$$



Using Maple I have:



$$b_n=frac{2}{pi}[frac{3}{2},{frac {sin left( frac{pi n}{3} right) -sin left( pi ,n
right) +sin left( frac{2 pi n}{3} right) }{{n}^{2}}}
]$$



then,



$$b_n=frac{1}{pi}[3,{frac {sin left( frac{pi n}{3} right) -sin left( pi ,n
right) +sin left( frac{2 pi n}{3} right) }{{n}^{2}}}]$$



this implies:



$$f(x)=sum_{i=1}^nfrac{1}{pi}[3,{frac {sin left( frac{pi n}{3} right) -sin left( pi ,n
right) +sin left( frac{2 pi n}{3} right) }{{n}^{2}}}]sin(nx)$$
for $0leq xleq pi$



here, I'm stuck. can someone help me?










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    Consider the function:



    $f(x)= left{ begin{array}{lcc}
    frac{3x}{2} & if & 0leq x leq frac{pi}{3} \
    \ frac{pi}{2} & si & frac{pi}3 < x < frac{2pi}3 \
    \ frac{3(pi - x)}{2} & si & frac{2pi}{3}leq x leq pi
    end{array}
    right.$



    Prove



    $$f(x)=sum_{i=1}^inftyfrac{sin(2n-1)pi}{3(2n-1)^2}times sin(2n-1)x,,,, text{for 0$leq$x$leqpi$ }$$



    My attempt:



    We need find the representation of fourier series in $sin$ of $f$.



    As $f$ is continuous then



    $$f(x)=sum_{i=1}^nb_ntimes sin(nx)$ with $xin[0,pi]$$



    where,



    $$b_n=frac{2}{pi}int_{0}^{pi} f(x)times sin(nx)dx$$



    Using Maple I have:



    $$b_n=frac{2}{pi}[frac{3}{2},{frac {sin left( frac{pi n}{3} right) -sin left( pi ,n
    right) +sin left( frac{2 pi n}{3} right) }{{n}^{2}}}
    ]$$



    then,



    $$b_n=frac{1}{pi}[3,{frac {sin left( frac{pi n}{3} right) -sin left( pi ,n
    right) +sin left( frac{2 pi n}{3} right) }{{n}^{2}}}]$$



    this implies:



    $$f(x)=sum_{i=1}^nfrac{1}{pi}[3,{frac {sin left( frac{pi n}{3} right) -sin left( pi ,n
    right) +sin left( frac{2 pi n}{3} right) }{{n}^{2}}}]sin(nx)$$
    for $0leq xleq pi$



    here, I'm stuck. can someone help me?










    share|cite|improve this question











    $endgroup$















      0












      0








      0





      $begingroup$


      Consider the function:



      $f(x)= left{ begin{array}{lcc}
      frac{3x}{2} & if & 0leq x leq frac{pi}{3} \
      \ frac{pi}{2} & si & frac{pi}3 < x < frac{2pi}3 \
      \ frac{3(pi - x)}{2} & si & frac{2pi}{3}leq x leq pi
      end{array}
      right.$



      Prove



      $$f(x)=sum_{i=1}^inftyfrac{sin(2n-1)pi}{3(2n-1)^2}times sin(2n-1)x,,,, text{for 0$leq$x$leqpi$ }$$



      My attempt:



      We need find the representation of fourier series in $sin$ of $f$.



      As $f$ is continuous then



      $$f(x)=sum_{i=1}^nb_ntimes sin(nx)$ with $xin[0,pi]$$



      where,



      $$b_n=frac{2}{pi}int_{0}^{pi} f(x)times sin(nx)dx$$



      Using Maple I have:



      $$b_n=frac{2}{pi}[frac{3}{2},{frac {sin left( frac{pi n}{3} right) -sin left( pi ,n
      right) +sin left( frac{2 pi n}{3} right) }{{n}^{2}}}
      ]$$



      then,



      $$b_n=frac{1}{pi}[3,{frac {sin left( frac{pi n}{3} right) -sin left( pi ,n
      right) +sin left( frac{2 pi n}{3} right) }{{n}^{2}}}]$$



      this implies:



      $$f(x)=sum_{i=1}^nfrac{1}{pi}[3,{frac {sin left( frac{pi n}{3} right) -sin left( pi ,n
      right) +sin left( frac{2 pi n}{3} right) }{{n}^{2}}}]sin(nx)$$
      for $0leq xleq pi$



      here, I'm stuck. can someone help me?










      share|cite|improve this question











      $endgroup$




      Consider the function:



      $f(x)= left{ begin{array}{lcc}
      frac{3x}{2} & if & 0leq x leq frac{pi}{3} \
      \ frac{pi}{2} & si & frac{pi}3 < x < frac{2pi}3 \
      \ frac{3(pi - x)}{2} & si & frac{2pi}{3}leq x leq pi
      end{array}
      right.$



      Prove



      $$f(x)=sum_{i=1}^inftyfrac{sin(2n-1)pi}{3(2n-1)^2}times sin(2n-1)x,,,, text{for 0$leq$x$leqpi$ }$$



      My attempt:



      We need find the representation of fourier series in $sin$ of $f$.



      As $f$ is continuous then



      $$f(x)=sum_{i=1}^nb_ntimes sin(nx)$ with $xin[0,pi]$$



      where,



      $$b_n=frac{2}{pi}int_{0}^{pi} f(x)times sin(nx)dx$$



      Using Maple I have:



      $$b_n=frac{2}{pi}[frac{3}{2},{frac {sin left( frac{pi n}{3} right) -sin left( pi ,n
      right) +sin left( frac{2 pi n}{3} right) }{{n}^{2}}}
      ]$$



      then,



      $$b_n=frac{1}{pi}[3,{frac {sin left( frac{pi n}{3} right) -sin left( pi ,n
      right) +sin left( frac{2 pi n}{3} right) }{{n}^{2}}}]$$



      this implies:



      $$f(x)=sum_{i=1}^nfrac{1}{pi}[3,{frac {sin left( frac{pi n}{3} right) -sin left( pi ,n
      right) +sin left( frac{2 pi n}{3} right) }{{n}^{2}}}]sin(nx)$$
      for $0leq xleq pi$



      here, I'm stuck. can someone help me?







      fourier-series






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 29 '18 at 16:20









      Bernard

      123k741117




      123k741117










      asked Dec 29 '18 at 16:16









      Bvss12Bvss12

      1,821619




      1,821619






















          0






          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3055995%2fprove-an-equality-of-fourier-series%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3055995%2fprove-an-equality-of-fourier-series%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Probability when a professor distributes a quiz and homework assignment to a class of n students.

          Aardman Animations

          Are they similar matrix