Deriving covariance of Gaussian of linear combination of latent variable + noise












0












$begingroup$


I'm trying to understand this part of Bishop's PRML (Equations 12.31 - 12.38).



If we have a pdf $p(mathbf{z}) = mathcal{N}(mathbf{z}|mathbf{0}, mathbf{I})$ and a random variable $mathbf{x} = mathbf{Wz} + boldsymbolmu + boldsymbolepsilon$, then the covariance of $mathbf{x}$ can be calculated as



begin{align}
cov[mathbf{x}] &= mathbb{E}[(mathbf{Wz} + boldsymbolepsilon)(mathbf{Wz} + boldsymbolepsilon)^T]\
&= mathbb{E}[mathbf{Wzz}^Tmathbf{W}^T] + mathbb{E}[boldsymbolepsilonboldsymbolepsilon^T] = mathbf{WW}^T + sigma^2mathbf{I}
end{align}



where Bishop writes he has used the fact that $mathbf{z}$ and $boldsymbolepsilon$ are independent random variables and hence are uncorrelated.



If we expand the first row of the covariance calculations, we get:



begin{align}
cov[mathbf{x}] &= mathbb{E}[(mathbf{Wz} + boldsymbolepsilon)(mathbf{Wz} + boldsymbolepsilon)^T]\
&= mathbb{E}[mathbf{Wzz}^Tmathbf{W}^T] + mathbb{E}[mathbf{Wz}boldsymbolepsilon^T] + mathbb{E}[boldsymbolepsilonmathbf{z}^Tmathbf{W}^T] + mathbb{E}[boldsymbolepsilonboldsymbolepsilon^T]
end{align}



This must mean that the two middle terms of this last expression evaluate to zero because $mathbf{z}$ and $boldsymbolepsilon$ are uncorrelated. But I fail to see why this is the case. How do they become zero?










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    I'm trying to understand this part of Bishop's PRML (Equations 12.31 - 12.38).



    If we have a pdf $p(mathbf{z}) = mathcal{N}(mathbf{z}|mathbf{0}, mathbf{I})$ and a random variable $mathbf{x} = mathbf{Wz} + boldsymbolmu + boldsymbolepsilon$, then the covariance of $mathbf{x}$ can be calculated as



    begin{align}
    cov[mathbf{x}] &= mathbb{E}[(mathbf{Wz} + boldsymbolepsilon)(mathbf{Wz} + boldsymbolepsilon)^T]\
    &= mathbb{E}[mathbf{Wzz}^Tmathbf{W}^T] + mathbb{E}[boldsymbolepsilonboldsymbolepsilon^T] = mathbf{WW}^T + sigma^2mathbf{I}
    end{align}



    where Bishop writes he has used the fact that $mathbf{z}$ and $boldsymbolepsilon$ are independent random variables and hence are uncorrelated.



    If we expand the first row of the covariance calculations, we get:



    begin{align}
    cov[mathbf{x}] &= mathbb{E}[(mathbf{Wz} + boldsymbolepsilon)(mathbf{Wz} + boldsymbolepsilon)^T]\
    &= mathbb{E}[mathbf{Wzz}^Tmathbf{W}^T] + mathbb{E}[mathbf{Wz}boldsymbolepsilon^T] + mathbb{E}[boldsymbolepsilonmathbf{z}^Tmathbf{W}^T] + mathbb{E}[boldsymbolepsilonboldsymbolepsilon^T]
    end{align}



    This must mean that the two middle terms of this last expression evaluate to zero because $mathbf{z}$ and $boldsymbolepsilon$ are uncorrelated. But I fail to see why this is the case. How do they become zero?










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      I'm trying to understand this part of Bishop's PRML (Equations 12.31 - 12.38).



      If we have a pdf $p(mathbf{z}) = mathcal{N}(mathbf{z}|mathbf{0}, mathbf{I})$ and a random variable $mathbf{x} = mathbf{Wz} + boldsymbolmu + boldsymbolepsilon$, then the covariance of $mathbf{x}$ can be calculated as



      begin{align}
      cov[mathbf{x}] &= mathbb{E}[(mathbf{Wz} + boldsymbolepsilon)(mathbf{Wz} + boldsymbolepsilon)^T]\
      &= mathbb{E}[mathbf{Wzz}^Tmathbf{W}^T] + mathbb{E}[boldsymbolepsilonboldsymbolepsilon^T] = mathbf{WW}^T + sigma^2mathbf{I}
      end{align}



      where Bishop writes he has used the fact that $mathbf{z}$ and $boldsymbolepsilon$ are independent random variables and hence are uncorrelated.



      If we expand the first row of the covariance calculations, we get:



      begin{align}
      cov[mathbf{x}] &= mathbb{E}[(mathbf{Wz} + boldsymbolepsilon)(mathbf{Wz} + boldsymbolepsilon)^T]\
      &= mathbb{E}[mathbf{Wzz}^Tmathbf{W}^T] + mathbb{E}[mathbf{Wz}boldsymbolepsilon^T] + mathbb{E}[boldsymbolepsilonmathbf{z}^Tmathbf{W}^T] + mathbb{E}[boldsymbolepsilonboldsymbolepsilon^T]
      end{align}



      This must mean that the two middle terms of this last expression evaluate to zero because $mathbf{z}$ and $boldsymbolepsilon$ are uncorrelated. But I fail to see why this is the case. How do they become zero?










      share|cite|improve this question









      $endgroup$




      I'm trying to understand this part of Bishop's PRML (Equations 12.31 - 12.38).



      If we have a pdf $p(mathbf{z}) = mathcal{N}(mathbf{z}|mathbf{0}, mathbf{I})$ and a random variable $mathbf{x} = mathbf{Wz} + boldsymbolmu + boldsymbolepsilon$, then the covariance of $mathbf{x}$ can be calculated as



      begin{align}
      cov[mathbf{x}] &= mathbb{E}[(mathbf{Wz} + boldsymbolepsilon)(mathbf{Wz} + boldsymbolepsilon)^T]\
      &= mathbb{E}[mathbf{Wzz}^Tmathbf{W}^T] + mathbb{E}[boldsymbolepsilonboldsymbolepsilon^T] = mathbf{WW}^T + sigma^2mathbf{I}
      end{align}



      where Bishop writes he has used the fact that $mathbf{z}$ and $boldsymbolepsilon$ are independent random variables and hence are uncorrelated.



      If we expand the first row of the covariance calculations, we get:



      begin{align}
      cov[mathbf{x}] &= mathbb{E}[(mathbf{Wz} + boldsymbolepsilon)(mathbf{Wz} + boldsymbolepsilon)^T]\
      &= mathbb{E}[mathbf{Wzz}^Tmathbf{W}^T] + mathbb{E}[mathbf{Wz}boldsymbolepsilon^T] + mathbb{E}[boldsymbolepsilonmathbf{z}^Tmathbf{W}^T] + mathbb{E}[boldsymbolepsilonboldsymbolepsilon^T]
      end{align}



      This must mean that the two middle terms of this last expression evaluate to zero because $mathbf{z}$ and $boldsymbolepsilon$ are uncorrelated. But I fail to see why this is the case. How do they become zero?







      probability-theory






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 29 '18 at 16:11









      SandiSandi

      262112




      262112






















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          I believe I've found the answer myself. Since $mathbf{W}$ is a parameter and not a random variable, and $mathbf{z}$ and $boldsymbolepsilon$ have zero-mean, we have:



          begin{align}
          mathbb{E}[mathbf{Wz}boldsymbolepsilon^T] = mathbf{W}mathbb{E}[mathbf{z}boldsymbolepsilon^T] = mathbf{W}mathbb{E}[mathbf{z}]mathbb{E}[boldsymbolepsilon^T] = mathbf{W}mathbf{0}mathbf{0}^T
          end{align}



          Which is a matrix of zeros. We can factorize the expected value of $mathbf{z}boldsymbolepsilon^T$ as above because they are uncorrelated.



          Similarly,



          begin{align}
          mathbb{E}[boldsymbolepsilonmathbf{z}^Tmathbf{W}^T] = mathbb{E}[boldsymbolepsilonmathbf{z}^T]mathbf{W}^T = mathbb{E}[boldsymbolepsilon]mathbb{E}[mathbf{z}^T]mathbf{W}^T = mathbf{0}mathbf{0}^Tmathbf{W}^T
          end{align}



          Which also is a matrix of zeros.






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3055985%2fderiving-covariance-of-gaussian-of-linear-combination-of-latent-variable-noise%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0












            $begingroup$

            I believe I've found the answer myself. Since $mathbf{W}$ is a parameter and not a random variable, and $mathbf{z}$ and $boldsymbolepsilon$ have zero-mean, we have:



            begin{align}
            mathbb{E}[mathbf{Wz}boldsymbolepsilon^T] = mathbf{W}mathbb{E}[mathbf{z}boldsymbolepsilon^T] = mathbf{W}mathbb{E}[mathbf{z}]mathbb{E}[boldsymbolepsilon^T] = mathbf{W}mathbf{0}mathbf{0}^T
            end{align}



            Which is a matrix of zeros. We can factorize the expected value of $mathbf{z}boldsymbolepsilon^T$ as above because they are uncorrelated.



            Similarly,



            begin{align}
            mathbb{E}[boldsymbolepsilonmathbf{z}^Tmathbf{W}^T] = mathbb{E}[boldsymbolepsilonmathbf{z}^T]mathbf{W}^T = mathbb{E}[boldsymbolepsilon]mathbb{E}[mathbf{z}^T]mathbf{W}^T = mathbf{0}mathbf{0}^Tmathbf{W}^T
            end{align}



            Which also is a matrix of zeros.






            share|cite|improve this answer









            $endgroup$


















              0












              $begingroup$

              I believe I've found the answer myself. Since $mathbf{W}$ is a parameter and not a random variable, and $mathbf{z}$ and $boldsymbolepsilon$ have zero-mean, we have:



              begin{align}
              mathbb{E}[mathbf{Wz}boldsymbolepsilon^T] = mathbf{W}mathbb{E}[mathbf{z}boldsymbolepsilon^T] = mathbf{W}mathbb{E}[mathbf{z}]mathbb{E}[boldsymbolepsilon^T] = mathbf{W}mathbf{0}mathbf{0}^T
              end{align}



              Which is a matrix of zeros. We can factorize the expected value of $mathbf{z}boldsymbolepsilon^T$ as above because they are uncorrelated.



              Similarly,



              begin{align}
              mathbb{E}[boldsymbolepsilonmathbf{z}^Tmathbf{W}^T] = mathbb{E}[boldsymbolepsilonmathbf{z}^T]mathbf{W}^T = mathbb{E}[boldsymbolepsilon]mathbb{E}[mathbf{z}^T]mathbf{W}^T = mathbf{0}mathbf{0}^Tmathbf{W}^T
              end{align}



              Which also is a matrix of zeros.






              share|cite|improve this answer









              $endgroup$
















                0












                0








                0





                $begingroup$

                I believe I've found the answer myself. Since $mathbf{W}$ is a parameter and not a random variable, and $mathbf{z}$ and $boldsymbolepsilon$ have zero-mean, we have:



                begin{align}
                mathbb{E}[mathbf{Wz}boldsymbolepsilon^T] = mathbf{W}mathbb{E}[mathbf{z}boldsymbolepsilon^T] = mathbf{W}mathbb{E}[mathbf{z}]mathbb{E}[boldsymbolepsilon^T] = mathbf{W}mathbf{0}mathbf{0}^T
                end{align}



                Which is a matrix of zeros. We can factorize the expected value of $mathbf{z}boldsymbolepsilon^T$ as above because they are uncorrelated.



                Similarly,



                begin{align}
                mathbb{E}[boldsymbolepsilonmathbf{z}^Tmathbf{W}^T] = mathbb{E}[boldsymbolepsilonmathbf{z}^T]mathbf{W}^T = mathbb{E}[boldsymbolepsilon]mathbb{E}[mathbf{z}^T]mathbf{W}^T = mathbf{0}mathbf{0}^Tmathbf{W}^T
                end{align}



                Which also is a matrix of zeros.






                share|cite|improve this answer









                $endgroup$



                I believe I've found the answer myself. Since $mathbf{W}$ is a parameter and not a random variable, and $mathbf{z}$ and $boldsymbolepsilon$ have zero-mean, we have:



                begin{align}
                mathbb{E}[mathbf{Wz}boldsymbolepsilon^T] = mathbf{W}mathbb{E}[mathbf{z}boldsymbolepsilon^T] = mathbf{W}mathbb{E}[mathbf{z}]mathbb{E}[boldsymbolepsilon^T] = mathbf{W}mathbf{0}mathbf{0}^T
                end{align}



                Which is a matrix of zeros. We can factorize the expected value of $mathbf{z}boldsymbolepsilon^T$ as above because they are uncorrelated.



                Similarly,



                begin{align}
                mathbb{E}[boldsymbolepsilonmathbf{z}^Tmathbf{W}^T] = mathbb{E}[boldsymbolepsilonmathbf{z}^T]mathbf{W}^T = mathbb{E}[boldsymbolepsilon]mathbb{E}[mathbf{z}^T]mathbf{W}^T = mathbf{0}mathbf{0}^Tmathbf{W}^T
                end{align}



                Which also is a matrix of zeros.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Dec 29 '18 at 16:29









                SandiSandi

                262112




                262112






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3055985%2fderiving-covariance-of-gaussian-of-linear-combination-of-latent-variable-noise%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Probability when a professor distributes a quiz and homework assignment to a class of n students.

                    Aardman Animations

                    Are they similar matrix