Polynomial roots?












1












$begingroup$



For which real values of parameter $a$ both roots of polynom $f(x)=(a+1)x^2 + 2ax + a +3$ are positive numbers.




In solution they give 3 conditions that have to be satisfied.



1) $(a+1)f(0)>0$



2) $D>0$



3) $x_{0}>0$



First 2 i understand but not last one.



I dont know what $x_{0}>0$ is . When i calculate first 2 conditions i get



$ain left langle -infty,-3 right rangle cup left langle -1,-3/4 right rangle$



But books final solution is only $ left langle -1,-3/4 right rangle$










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Neither do I, as $x_0$ is not defined.
    $endgroup$
    – Yuriy S
    Dec 29 '18 at 15:41










  • $begingroup$
    What is $;x_0;$ ...?
    $endgroup$
    – DonAntonio
    Dec 29 '18 at 15:42










  • $begingroup$
    The basic condition is $a ne -1$, otherwise it does not make sense to speak about both roots. Now you can solve the quadratic equation.
    $endgroup$
    – Paul Frost
    Dec 29 '18 at 16:49










  • $begingroup$
    If you don't know what $;x_0;$ is, how can you expect we'll know? Guessing?
    $endgroup$
    – DonAntonio
    Dec 29 '18 at 17:55










  • $begingroup$
    @Ivan be careful, the brackets have to be open (-1,-3/4).
    $endgroup$
    – user376343
    Dec 29 '18 at 20:09
















1












$begingroup$



For which real values of parameter $a$ both roots of polynom $f(x)=(a+1)x^2 + 2ax + a +3$ are positive numbers.




In solution they give 3 conditions that have to be satisfied.



1) $(a+1)f(0)>0$



2) $D>0$



3) $x_{0}>0$



First 2 i understand but not last one.



I dont know what $x_{0}>0$ is . When i calculate first 2 conditions i get



$ain left langle -infty,-3 right rangle cup left langle -1,-3/4 right rangle$



But books final solution is only $ left langle -1,-3/4 right rangle$










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Neither do I, as $x_0$ is not defined.
    $endgroup$
    – Yuriy S
    Dec 29 '18 at 15:41










  • $begingroup$
    What is $;x_0;$ ...?
    $endgroup$
    – DonAntonio
    Dec 29 '18 at 15:42










  • $begingroup$
    The basic condition is $a ne -1$, otherwise it does not make sense to speak about both roots. Now you can solve the quadratic equation.
    $endgroup$
    – Paul Frost
    Dec 29 '18 at 16:49










  • $begingroup$
    If you don't know what $;x_0;$ is, how can you expect we'll know? Guessing?
    $endgroup$
    – DonAntonio
    Dec 29 '18 at 17:55










  • $begingroup$
    @Ivan be careful, the brackets have to be open (-1,-3/4).
    $endgroup$
    – user376343
    Dec 29 '18 at 20:09














1












1








1


0



$begingroup$



For which real values of parameter $a$ both roots of polynom $f(x)=(a+1)x^2 + 2ax + a +3$ are positive numbers.




In solution they give 3 conditions that have to be satisfied.



1) $(a+1)f(0)>0$



2) $D>0$



3) $x_{0}>0$



First 2 i understand but not last one.



I dont know what $x_{0}>0$ is . When i calculate first 2 conditions i get



$ain left langle -infty,-3 right rangle cup left langle -1,-3/4 right rangle$



But books final solution is only $ left langle -1,-3/4 right rangle$










share|cite|improve this question











$endgroup$





For which real values of parameter $a$ both roots of polynom $f(x)=(a+1)x^2 + 2ax + a +3$ are positive numbers.




In solution they give 3 conditions that have to be satisfied.



1) $(a+1)f(0)>0$



2) $D>0$



3) $x_{0}>0$



First 2 i understand but not last one.



I dont know what $x_{0}>0$ is . When i calculate first 2 conditions i get



$ain left langle -infty,-3 right rangle cup left langle -1,-3/4 right rangle$



But books final solution is only $ left langle -1,-3/4 right rangle$







polynomials






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 29 '18 at 16:12







Ivan Ljilja

















asked Dec 29 '18 at 15:39









Ivan LjiljaIvan Ljilja

205




205








  • 1




    $begingroup$
    Neither do I, as $x_0$ is not defined.
    $endgroup$
    – Yuriy S
    Dec 29 '18 at 15:41










  • $begingroup$
    What is $;x_0;$ ...?
    $endgroup$
    – DonAntonio
    Dec 29 '18 at 15:42










  • $begingroup$
    The basic condition is $a ne -1$, otherwise it does not make sense to speak about both roots. Now you can solve the quadratic equation.
    $endgroup$
    – Paul Frost
    Dec 29 '18 at 16:49










  • $begingroup$
    If you don't know what $;x_0;$ is, how can you expect we'll know? Guessing?
    $endgroup$
    – DonAntonio
    Dec 29 '18 at 17:55










  • $begingroup$
    @Ivan be careful, the brackets have to be open (-1,-3/4).
    $endgroup$
    – user376343
    Dec 29 '18 at 20:09














  • 1




    $begingroup$
    Neither do I, as $x_0$ is not defined.
    $endgroup$
    – Yuriy S
    Dec 29 '18 at 15:41










  • $begingroup$
    What is $;x_0;$ ...?
    $endgroup$
    – DonAntonio
    Dec 29 '18 at 15:42










  • $begingroup$
    The basic condition is $a ne -1$, otherwise it does not make sense to speak about both roots. Now you can solve the quadratic equation.
    $endgroup$
    – Paul Frost
    Dec 29 '18 at 16:49










  • $begingroup$
    If you don't know what $;x_0;$ is, how can you expect we'll know? Guessing?
    $endgroup$
    – DonAntonio
    Dec 29 '18 at 17:55










  • $begingroup$
    @Ivan be careful, the brackets have to be open (-1,-3/4).
    $endgroup$
    – user376343
    Dec 29 '18 at 20:09








1




1




$begingroup$
Neither do I, as $x_0$ is not defined.
$endgroup$
– Yuriy S
Dec 29 '18 at 15:41




$begingroup$
Neither do I, as $x_0$ is not defined.
$endgroup$
– Yuriy S
Dec 29 '18 at 15:41












$begingroup$
What is $;x_0;$ ...?
$endgroup$
– DonAntonio
Dec 29 '18 at 15:42




$begingroup$
What is $;x_0;$ ...?
$endgroup$
– DonAntonio
Dec 29 '18 at 15:42












$begingroup$
The basic condition is $a ne -1$, otherwise it does not make sense to speak about both roots. Now you can solve the quadratic equation.
$endgroup$
– Paul Frost
Dec 29 '18 at 16:49




$begingroup$
The basic condition is $a ne -1$, otherwise it does not make sense to speak about both roots. Now you can solve the quadratic equation.
$endgroup$
– Paul Frost
Dec 29 '18 at 16:49












$begingroup$
If you don't know what $;x_0;$ is, how can you expect we'll know? Guessing?
$endgroup$
– DonAntonio
Dec 29 '18 at 17:55




$begingroup$
If you don't know what $;x_0;$ is, how can you expect we'll know? Guessing?
$endgroup$
– DonAntonio
Dec 29 '18 at 17:55












$begingroup$
@Ivan be careful, the brackets have to be open (-1,-3/4).
$endgroup$
– user376343
Dec 29 '18 at 20:09




$begingroup$
@Ivan be careful, the brackets have to be open (-1,-3/4).
$endgroup$
– user376343
Dec 29 '18 at 20:09










2 Answers
2






active

oldest

votes


















2












$begingroup$

The discriminant must be positive:



$$Delta=4a^2-4(a+1)(a+3)>0implies-16a-12>0implies a<-frac{12}{16}=-frac34$$



Both roots, say $;x_1,x_2;$ , positive:



$$begin{cases}0<x_1x_2=cfrac{a+3}{a+1}iff a<-3;;text{or};;a>-1\{}\text{And}\{}{}\
0<x_1+x_2=-frac{2a}{a+1}impliesfrac a{a+1}<0iff -1<a<0end{cases}$$



Now put things together and do a little mathematics here.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Discriminant...
    $endgroup$
    – user376343
    Dec 29 '18 at 20:07



















0












$begingroup$

It must be $$-frac{a}{a+1}+frac{sqrt{-4a-3}}{a+1}>0$$ and $$-frac{a}{a+1}-frac{sqrt{-4a-3}}{a+1}>0$$ and $$-4a-3>0$$






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3055955%2fpolynomial-roots%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    The discriminant must be positive:



    $$Delta=4a^2-4(a+1)(a+3)>0implies-16a-12>0implies a<-frac{12}{16}=-frac34$$



    Both roots, say $;x_1,x_2;$ , positive:



    $$begin{cases}0<x_1x_2=cfrac{a+3}{a+1}iff a<-3;;text{or};;a>-1\{}\text{And}\{}{}\
    0<x_1+x_2=-frac{2a}{a+1}impliesfrac a{a+1}<0iff -1<a<0end{cases}$$



    Now put things together and do a little mathematics here.






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      Discriminant...
      $endgroup$
      – user376343
      Dec 29 '18 at 20:07
















    2












    $begingroup$

    The discriminant must be positive:



    $$Delta=4a^2-4(a+1)(a+3)>0implies-16a-12>0implies a<-frac{12}{16}=-frac34$$



    Both roots, say $;x_1,x_2;$ , positive:



    $$begin{cases}0<x_1x_2=cfrac{a+3}{a+1}iff a<-3;;text{or};;a>-1\{}\text{And}\{}{}\
    0<x_1+x_2=-frac{2a}{a+1}impliesfrac a{a+1}<0iff -1<a<0end{cases}$$



    Now put things together and do a little mathematics here.






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      Discriminant...
      $endgroup$
      – user376343
      Dec 29 '18 at 20:07














    2












    2








    2





    $begingroup$

    The discriminant must be positive:



    $$Delta=4a^2-4(a+1)(a+3)>0implies-16a-12>0implies a<-frac{12}{16}=-frac34$$



    Both roots, say $;x_1,x_2;$ , positive:



    $$begin{cases}0<x_1x_2=cfrac{a+3}{a+1}iff a<-3;;text{or};;a>-1\{}\text{And}\{}{}\
    0<x_1+x_2=-frac{2a}{a+1}impliesfrac a{a+1}<0iff -1<a<0end{cases}$$



    Now put things together and do a little mathematics here.






    share|cite|improve this answer











    $endgroup$



    The discriminant must be positive:



    $$Delta=4a^2-4(a+1)(a+3)>0implies-16a-12>0implies a<-frac{12}{16}=-frac34$$



    Both roots, say $;x_1,x_2;$ , positive:



    $$begin{cases}0<x_1x_2=cfrac{a+3}{a+1}iff a<-3;;text{or};;a>-1\{}\text{And}\{}{}\
    0<x_1+x_2=-frac{2a}{a+1}impliesfrac a{a+1}<0iff -1<a<0end{cases}$$



    Now put things together and do a little mathematics here.







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited Dec 30 '18 at 15:33

























    answered Dec 29 '18 at 17:57









    DonAntonioDonAntonio

    180k1494233




    180k1494233












    • $begingroup$
      Discriminant...
      $endgroup$
      – user376343
      Dec 29 '18 at 20:07


















    • $begingroup$
      Discriminant...
      $endgroup$
      – user376343
      Dec 29 '18 at 20:07
















    $begingroup$
    Discriminant...
    $endgroup$
    – user376343
    Dec 29 '18 at 20:07




    $begingroup$
    Discriminant...
    $endgroup$
    – user376343
    Dec 29 '18 at 20:07











    0












    $begingroup$

    It must be $$-frac{a}{a+1}+frac{sqrt{-4a-3}}{a+1}>0$$ and $$-frac{a}{a+1}-frac{sqrt{-4a-3}}{a+1}>0$$ and $$-4a-3>0$$






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      It must be $$-frac{a}{a+1}+frac{sqrt{-4a-3}}{a+1}>0$$ and $$-frac{a}{a+1}-frac{sqrt{-4a-3}}{a+1}>0$$ and $$-4a-3>0$$






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        It must be $$-frac{a}{a+1}+frac{sqrt{-4a-3}}{a+1}>0$$ and $$-frac{a}{a+1}-frac{sqrt{-4a-3}}{a+1}>0$$ and $$-4a-3>0$$






        share|cite|improve this answer









        $endgroup$



        It must be $$-frac{a}{a+1}+frac{sqrt{-4a-3}}{a+1}>0$$ and $$-frac{a}{a+1}-frac{sqrt{-4a-3}}{a+1}>0$$ and $$-4a-3>0$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 29 '18 at 15:53









        Dr. Sonnhard GraubnerDr. Sonnhard Graubner

        78k42866




        78k42866






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3055955%2fpolynomial-roots%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Probability when a professor distributes a quiz and homework assignment to a class of n students.

            Aardman Animations

            Are they similar matrix