Polynomial roots?
$begingroup$
For which real values of parameter $a$ both roots of polynom $f(x)=(a+1)x^2 + 2ax + a +3$ are positive numbers.
In solution they give 3 conditions that have to be satisfied.
1) $(a+1)f(0)>0$
2) $D>0$
3) $x_{0}>0$
First 2 i understand but not last one.
I dont know what $x_{0}>0$ is . When i calculate first 2 conditions i get
$ain left langle -infty,-3 right rangle cup left langle -1,-3/4 right rangle$
But books final solution is only $ left langle -1,-3/4 right rangle$
polynomials
$endgroup$
add a comment |
$begingroup$
For which real values of parameter $a$ both roots of polynom $f(x)=(a+1)x^2 + 2ax + a +3$ are positive numbers.
In solution they give 3 conditions that have to be satisfied.
1) $(a+1)f(0)>0$
2) $D>0$
3) $x_{0}>0$
First 2 i understand but not last one.
I dont know what $x_{0}>0$ is . When i calculate first 2 conditions i get
$ain left langle -infty,-3 right rangle cup left langle -1,-3/4 right rangle$
But books final solution is only $ left langle -1,-3/4 right rangle$
polynomials
$endgroup$
1
$begingroup$
Neither do I, as $x_0$ is not defined.
$endgroup$
– Yuriy S
Dec 29 '18 at 15:41
$begingroup$
What is $;x_0;$ ...?
$endgroup$
– DonAntonio
Dec 29 '18 at 15:42
$begingroup$
The basic condition is $a ne -1$, otherwise it does not make sense to speak about both roots. Now you can solve the quadratic equation.
$endgroup$
– Paul Frost
Dec 29 '18 at 16:49
$begingroup$
If you don't know what $;x_0;$ is, how can you expect we'll know? Guessing?
$endgroup$
– DonAntonio
Dec 29 '18 at 17:55
$begingroup$
@Ivan be careful, the brackets have to be open (-1,-3/4).
$endgroup$
– user376343
Dec 29 '18 at 20:09
add a comment |
$begingroup$
For which real values of parameter $a$ both roots of polynom $f(x)=(a+1)x^2 + 2ax + a +3$ are positive numbers.
In solution they give 3 conditions that have to be satisfied.
1) $(a+1)f(0)>0$
2) $D>0$
3) $x_{0}>0$
First 2 i understand but not last one.
I dont know what $x_{0}>0$ is . When i calculate first 2 conditions i get
$ain left langle -infty,-3 right rangle cup left langle -1,-3/4 right rangle$
But books final solution is only $ left langle -1,-3/4 right rangle$
polynomials
$endgroup$
For which real values of parameter $a$ both roots of polynom $f(x)=(a+1)x^2 + 2ax + a +3$ are positive numbers.
In solution they give 3 conditions that have to be satisfied.
1) $(a+1)f(0)>0$
2) $D>0$
3) $x_{0}>0$
First 2 i understand but not last one.
I dont know what $x_{0}>0$ is . When i calculate first 2 conditions i get
$ain left langle -infty,-3 right rangle cup left langle -1,-3/4 right rangle$
But books final solution is only $ left langle -1,-3/4 right rangle$
polynomials
polynomials
edited Dec 29 '18 at 16:12
Ivan Ljilja
asked Dec 29 '18 at 15:39
Ivan LjiljaIvan Ljilja
205
205
1
$begingroup$
Neither do I, as $x_0$ is not defined.
$endgroup$
– Yuriy S
Dec 29 '18 at 15:41
$begingroup$
What is $;x_0;$ ...?
$endgroup$
– DonAntonio
Dec 29 '18 at 15:42
$begingroup$
The basic condition is $a ne -1$, otherwise it does not make sense to speak about both roots. Now you can solve the quadratic equation.
$endgroup$
– Paul Frost
Dec 29 '18 at 16:49
$begingroup$
If you don't know what $;x_0;$ is, how can you expect we'll know? Guessing?
$endgroup$
– DonAntonio
Dec 29 '18 at 17:55
$begingroup$
@Ivan be careful, the brackets have to be open (-1,-3/4).
$endgroup$
– user376343
Dec 29 '18 at 20:09
add a comment |
1
$begingroup$
Neither do I, as $x_0$ is not defined.
$endgroup$
– Yuriy S
Dec 29 '18 at 15:41
$begingroup$
What is $;x_0;$ ...?
$endgroup$
– DonAntonio
Dec 29 '18 at 15:42
$begingroup$
The basic condition is $a ne -1$, otherwise it does not make sense to speak about both roots. Now you can solve the quadratic equation.
$endgroup$
– Paul Frost
Dec 29 '18 at 16:49
$begingroup$
If you don't know what $;x_0;$ is, how can you expect we'll know? Guessing?
$endgroup$
– DonAntonio
Dec 29 '18 at 17:55
$begingroup$
@Ivan be careful, the brackets have to be open (-1,-3/4).
$endgroup$
– user376343
Dec 29 '18 at 20:09
1
1
$begingroup$
Neither do I, as $x_0$ is not defined.
$endgroup$
– Yuriy S
Dec 29 '18 at 15:41
$begingroup$
Neither do I, as $x_0$ is not defined.
$endgroup$
– Yuriy S
Dec 29 '18 at 15:41
$begingroup$
What is $;x_0;$ ...?
$endgroup$
– DonAntonio
Dec 29 '18 at 15:42
$begingroup$
What is $;x_0;$ ...?
$endgroup$
– DonAntonio
Dec 29 '18 at 15:42
$begingroup$
The basic condition is $a ne -1$, otherwise it does not make sense to speak about both roots. Now you can solve the quadratic equation.
$endgroup$
– Paul Frost
Dec 29 '18 at 16:49
$begingroup$
The basic condition is $a ne -1$, otherwise it does not make sense to speak about both roots. Now you can solve the quadratic equation.
$endgroup$
– Paul Frost
Dec 29 '18 at 16:49
$begingroup$
If you don't know what $;x_0;$ is, how can you expect we'll know? Guessing?
$endgroup$
– DonAntonio
Dec 29 '18 at 17:55
$begingroup$
If you don't know what $;x_0;$ is, how can you expect we'll know? Guessing?
$endgroup$
– DonAntonio
Dec 29 '18 at 17:55
$begingroup$
@Ivan be careful, the brackets have to be open (-1,-3/4).
$endgroup$
– user376343
Dec 29 '18 at 20:09
$begingroup$
@Ivan be careful, the brackets have to be open (-1,-3/4).
$endgroup$
– user376343
Dec 29 '18 at 20:09
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
The discriminant must be positive:
$$Delta=4a^2-4(a+1)(a+3)>0implies-16a-12>0implies a<-frac{12}{16}=-frac34$$
Both roots, say $;x_1,x_2;$ , positive:
$$begin{cases}0<x_1x_2=cfrac{a+3}{a+1}iff a<-3;;text{or};;a>-1\{}\text{And}\{}{}\
0<x_1+x_2=-frac{2a}{a+1}impliesfrac a{a+1}<0iff -1<a<0end{cases}$$
Now put things together and do a little mathematics here.
$endgroup$
$begingroup$
Discriminant...
$endgroup$
– user376343
Dec 29 '18 at 20:07
add a comment |
$begingroup$
It must be $$-frac{a}{a+1}+frac{sqrt{-4a-3}}{a+1}>0$$ and $$-frac{a}{a+1}-frac{sqrt{-4a-3}}{a+1}>0$$ and $$-4a-3>0$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3055955%2fpolynomial-roots%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The discriminant must be positive:
$$Delta=4a^2-4(a+1)(a+3)>0implies-16a-12>0implies a<-frac{12}{16}=-frac34$$
Both roots, say $;x_1,x_2;$ , positive:
$$begin{cases}0<x_1x_2=cfrac{a+3}{a+1}iff a<-3;;text{or};;a>-1\{}\text{And}\{}{}\
0<x_1+x_2=-frac{2a}{a+1}impliesfrac a{a+1}<0iff -1<a<0end{cases}$$
Now put things together and do a little mathematics here.
$endgroup$
$begingroup$
Discriminant...
$endgroup$
– user376343
Dec 29 '18 at 20:07
add a comment |
$begingroup$
The discriminant must be positive:
$$Delta=4a^2-4(a+1)(a+3)>0implies-16a-12>0implies a<-frac{12}{16}=-frac34$$
Both roots, say $;x_1,x_2;$ , positive:
$$begin{cases}0<x_1x_2=cfrac{a+3}{a+1}iff a<-3;;text{or};;a>-1\{}\text{And}\{}{}\
0<x_1+x_2=-frac{2a}{a+1}impliesfrac a{a+1}<0iff -1<a<0end{cases}$$
Now put things together and do a little mathematics here.
$endgroup$
$begingroup$
Discriminant...
$endgroup$
– user376343
Dec 29 '18 at 20:07
add a comment |
$begingroup$
The discriminant must be positive:
$$Delta=4a^2-4(a+1)(a+3)>0implies-16a-12>0implies a<-frac{12}{16}=-frac34$$
Both roots, say $;x_1,x_2;$ , positive:
$$begin{cases}0<x_1x_2=cfrac{a+3}{a+1}iff a<-3;;text{or};;a>-1\{}\text{And}\{}{}\
0<x_1+x_2=-frac{2a}{a+1}impliesfrac a{a+1}<0iff -1<a<0end{cases}$$
Now put things together and do a little mathematics here.
$endgroup$
The discriminant must be positive:
$$Delta=4a^2-4(a+1)(a+3)>0implies-16a-12>0implies a<-frac{12}{16}=-frac34$$
Both roots, say $;x_1,x_2;$ , positive:
$$begin{cases}0<x_1x_2=cfrac{a+3}{a+1}iff a<-3;;text{or};;a>-1\{}\text{And}\{}{}\
0<x_1+x_2=-frac{2a}{a+1}impliesfrac a{a+1}<0iff -1<a<0end{cases}$$
Now put things together and do a little mathematics here.
edited Dec 30 '18 at 15:33
answered Dec 29 '18 at 17:57
DonAntonioDonAntonio
180k1494233
180k1494233
$begingroup$
Discriminant...
$endgroup$
– user376343
Dec 29 '18 at 20:07
add a comment |
$begingroup$
Discriminant...
$endgroup$
– user376343
Dec 29 '18 at 20:07
$begingroup$
Discriminant...
$endgroup$
– user376343
Dec 29 '18 at 20:07
$begingroup$
Discriminant...
$endgroup$
– user376343
Dec 29 '18 at 20:07
add a comment |
$begingroup$
It must be $$-frac{a}{a+1}+frac{sqrt{-4a-3}}{a+1}>0$$ and $$-frac{a}{a+1}-frac{sqrt{-4a-3}}{a+1}>0$$ and $$-4a-3>0$$
$endgroup$
add a comment |
$begingroup$
It must be $$-frac{a}{a+1}+frac{sqrt{-4a-3}}{a+1}>0$$ and $$-frac{a}{a+1}-frac{sqrt{-4a-3}}{a+1}>0$$ and $$-4a-3>0$$
$endgroup$
add a comment |
$begingroup$
It must be $$-frac{a}{a+1}+frac{sqrt{-4a-3}}{a+1}>0$$ and $$-frac{a}{a+1}-frac{sqrt{-4a-3}}{a+1}>0$$ and $$-4a-3>0$$
$endgroup$
It must be $$-frac{a}{a+1}+frac{sqrt{-4a-3}}{a+1}>0$$ and $$-frac{a}{a+1}-frac{sqrt{-4a-3}}{a+1}>0$$ and $$-4a-3>0$$
answered Dec 29 '18 at 15:53
Dr. Sonnhard GraubnerDr. Sonnhard Graubner
78k42866
78k42866
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3055955%2fpolynomial-roots%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Neither do I, as $x_0$ is not defined.
$endgroup$
– Yuriy S
Dec 29 '18 at 15:41
$begingroup$
What is $;x_0;$ ...?
$endgroup$
– DonAntonio
Dec 29 '18 at 15:42
$begingroup$
The basic condition is $a ne -1$, otherwise it does not make sense to speak about both roots. Now you can solve the quadratic equation.
$endgroup$
– Paul Frost
Dec 29 '18 at 16:49
$begingroup$
If you don't know what $;x_0;$ is, how can you expect we'll know? Guessing?
$endgroup$
– DonAntonio
Dec 29 '18 at 17:55
$begingroup$
@Ivan be careful, the brackets have to be open (-1,-3/4).
$endgroup$
– user376343
Dec 29 '18 at 20:09