Matrices and Probability question












1












$begingroup$


Question:




Let Matrix $A$ be a non-singular Matrix and satisfies with Matrix $B$ such that $A^2B=A$ . Given $S={-1,0,1}$ and
$$ A= begin{bmatrix} a & b \ c & d \ end{bmatrix} $$
in which $a,b,c,din S $ . What is the probability that $det(A+B)=detA + detB $




I did manage to work out and get the equation $a^2+d^2=-2bc$ and calculate $frac{8}{81}$? But i'm not sure if its the correct answer.










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    Question:




    Let Matrix $A$ be a non-singular Matrix and satisfies with Matrix $B$ such that $A^2B=A$ . Given $S={-1,0,1}$ and
    $$ A= begin{bmatrix} a & b \ c & d \ end{bmatrix} $$
    in which $a,b,c,din S $ . What is the probability that $det(A+B)=detA + detB $




    I did manage to work out and get the equation $a^2+d^2=-2bc$ and calculate $frac{8}{81}$? But i'm not sure if its the correct answer.










    share|cite|improve this question











    $endgroup$















      1












      1








      1





      $begingroup$


      Question:




      Let Matrix $A$ be a non-singular Matrix and satisfies with Matrix $B$ such that $A^2B=A$ . Given $S={-1,0,1}$ and
      $$ A= begin{bmatrix} a & b \ c & d \ end{bmatrix} $$
      in which $a,b,c,din S $ . What is the probability that $det(A+B)=detA + detB $




      I did manage to work out and get the equation $a^2+d^2=-2bc$ and calculate $frac{8}{81}$? But i'm not sure if its the correct answer.










      share|cite|improve this question











      $endgroup$




      Question:




      Let Matrix $A$ be a non-singular Matrix and satisfies with Matrix $B$ such that $A^2B=A$ . Given $S={-1,0,1}$ and
      $$ A= begin{bmatrix} a & b \ c & d \ end{bmatrix} $$
      in which $a,b,c,din S $ . What is the probability that $det(A+B)=detA + detB $




      I did manage to work out and get the equation $a^2+d^2=-2bc$ and calculate $frac{8}{81}$? But i'm not sure if its the correct answer.







      linear-algebra probability matrices






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 1 at 9:15









      Maria Mazur

      48.7k1260122




      48.7k1260122










      asked Jan 1 at 7:17









      ThenewendingThenewending

      61




      61






















          2 Answers
          2






          active

          oldest

          votes


















          1












          $begingroup$

          Yes, you are correct!



          Since $A$ is non-singular:
          $$A^2B=A iff AB=I iff \
          B=A^{-1}=frac{1}{ad-bc}
          begin{pmatrix}
          d & -b\
          -c & a
          end{pmatrix};\
          A+B=begin{pmatrix}a+frac{d}{ad-bc}&b-frac{b}{ad-bc}\ c-frac{c}{ad-bc}&d+frac{a}{ad-bc}end{pmatrix}.$$

          So:
          $$det(A)+det(B)=ad-bc+frac{1}{(ad-bc)^2}(ad-bc)=frac{(ad-bc)^2+1}{ad-bc};\
          det(A+B)=ad+frac{a^2+d^2}{ad-bc}+frac{ad}{(ad-bc)^2}-bc+frac{2bc}{ad-bc}-frac{bc}{(ad-bc)^2};\
          det(A)+det(B)=det(A+B) Rightarrow \
          (ad-bc)^2+1=(ad-bc)^2+a^2+d^2+2bc+1 Rightarrow \
          a^2+d^2=-2bc.$$

          Note that $adne bc$ and the RHS must be positive. Then the favorable outcomes are:
          $$begin{array}{r|r|r|r}
          N&a&b&c&d\
          hline
          1&-1&-1&1&-1\
          2&1&-1&1&1\
          3&-1&1&-1&-1\
          4&1&1&-1&1
          end{array}$$

          There are total $3^4$ possible ways for $a,b,c,din {-1,0,1}$.



          Hence the required probability is:
          $$P=frac{n(text{favorable})}{n(text{total})}=frac4{81}.$$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Thanks so much! Btw in the outcome N=2,3,6,7 wouldn’t it give ad=bc?? In which it would make it a singular matrix?
            $endgroup$
            – Thenewending
            Jan 1 at 9:17












          • $begingroup$
            Yes, we must reject those cases, fixed.
            $endgroup$
            – farruhota
            Jan 1 at 9:20



















          0












          $begingroup$

          Use $$det(A)det(A+B)= det (A)(det(A)+det(B))$$



          so $$ det (A(A+B)) = det (A^2)+det (AB)$$



          so $$ det (A^2+I) = det (A^2)+1$$



          since $$ A^2= begin{bmatrix} a^2+bc & b(a+d) \ c(a+d) & d^2+bc \ end{bmatrix} = begin{bmatrix} x & y \ z & t \ end{bmatrix}$$



          we get $$(x+1)(t+1)-yz = xt-yz+1implies x+t=0$$



          so $$a^2+d^2+2bc=0$$






          share|cite|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058263%2fmatrices-and-probability-question%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1












            $begingroup$

            Yes, you are correct!



            Since $A$ is non-singular:
            $$A^2B=A iff AB=I iff \
            B=A^{-1}=frac{1}{ad-bc}
            begin{pmatrix}
            d & -b\
            -c & a
            end{pmatrix};\
            A+B=begin{pmatrix}a+frac{d}{ad-bc}&b-frac{b}{ad-bc}\ c-frac{c}{ad-bc}&d+frac{a}{ad-bc}end{pmatrix}.$$

            So:
            $$det(A)+det(B)=ad-bc+frac{1}{(ad-bc)^2}(ad-bc)=frac{(ad-bc)^2+1}{ad-bc};\
            det(A+B)=ad+frac{a^2+d^2}{ad-bc}+frac{ad}{(ad-bc)^2}-bc+frac{2bc}{ad-bc}-frac{bc}{(ad-bc)^2};\
            det(A)+det(B)=det(A+B) Rightarrow \
            (ad-bc)^2+1=(ad-bc)^2+a^2+d^2+2bc+1 Rightarrow \
            a^2+d^2=-2bc.$$

            Note that $adne bc$ and the RHS must be positive. Then the favorable outcomes are:
            $$begin{array}{r|r|r|r}
            N&a&b&c&d\
            hline
            1&-1&-1&1&-1\
            2&1&-1&1&1\
            3&-1&1&-1&-1\
            4&1&1&-1&1
            end{array}$$

            There are total $3^4$ possible ways for $a,b,c,din {-1,0,1}$.



            Hence the required probability is:
            $$P=frac{n(text{favorable})}{n(text{total})}=frac4{81}.$$






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              Thanks so much! Btw in the outcome N=2,3,6,7 wouldn’t it give ad=bc?? In which it would make it a singular matrix?
              $endgroup$
              – Thenewending
              Jan 1 at 9:17












            • $begingroup$
              Yes, we must reject those cases, fixed.
              $endgroup$
              – farruhota
              Jan 1 at 9:20
















            1












            $begingroup$

            Yes, you are correct!



            Since $A$ is non-singular:
            $$A^2B=A iff AB=I iff \
            B=A^{-1}=frac{1}{ad-bc}
            begin{pmatrix}
            d & -b\
            -c & a
            end{pmatrix};\
            A+B=begin{pmatrix}a+frac{d}{ad-bc}&b-frac{b}{ad-bc}\ c-frac{c}{ad-bc}&d+frac{a}{ad-bc}end{pmatrix}.$$

            So:
            $$det(A)+det(B)=ad-bc+frac{1}{(ad-bc)^2}(ad-bc)=frac{(ad-bc)^2+1}{ad-bc};\
            det(A+B)=ad+frac{a^2+d^2}{ad-bc}+frac{ad}{(ad-bc)^2}-bc+frac{2bc}{ad-bc}-frac{bc}{(ad-bc)^2};\
            det(A)+det(B)=det(A+B) Rightarrow \
            (ad-bc)^2+1=(ad-bc)^2+a^2+d^2+2bc+1 Rightarrow \
            a^2+d^2=-2bc.$$

            Note that $adne bc$ and the RHS must be positive. Then the favorable outcomes are:
            $$begin{array}{r|r|r|r}
            N&a&b&c&d\
            hline
            1&-1&-1&1&-1\
            2&1&-1&1&1\
            3&-1&1&-1&-1\
            4&1&1&-1&1
            end{array}$$

            There are total $3^4$ possible ways for $a,b,c,din {-1,0,1}$.



            Hence the required probability is:
            $$P=frac{n(text{favorable})}{n(text{total})}=frac4{81}.$$






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              Thanks so much! Btw in the outcome N=2,3,6,7 wouldn’t it give ad=bc?? In which it would make it a singular matrix?
              $endgroup$
              – Thenewending
              Jan 1 at 9:17












            • $begingroup$
              Yes, we must reject those cases, fixed.
              $endgroup$
              – farruhota
              Jan 1 at 9:20














            1












            1








            1





            $begingroup$

            Yes, you are correct!



            Since $A$ is non-singular:
            $$A^2B=A iff AB=I iff \
            B=A^{-1}=frac{1}{ad-bc}
            begin{pmatrix}
            d & -b\
            -c & a
            end{pmatrix};\
            A+B=begin{pmatrix}a+frac{d}{ad-bc}&b-frac{b}{ad-bc}\ c-frac{c}{ad-bc}&d+frac{a}{ad-bc}end{pmatrix}.$$

            So:
            $$det(A)+det(B)=ad-bc+frac{1}{(ad-bc)^2}(ad-bc)=frac{(ad-bc)^2+1}{ad-bc};\
            det(A+B)=ad+frac{a^2+d^2}{ad-bc}+frac{ad}{(ad-bc)^2}-bc+frac{2bc}{ad-bc}-frac{bc}{(ad-bc)^2};\
            det(A)+det(B)=det(A+B) Rightarrow \
            (ad-bc)^2+1=(ad-bc)^2+a^2+d^2+2bc+1 Rightarrow \
            a^2+d^2=-2bc.$$

            Note that $adne bc$ and the RHS must be positive. Then the favorable outcomes are:
            $$begin{array}{r|r|r|r}
            N&a&b&c&d\
            hline
            1&-1&-1&1&-1\
            2&1&-1&1&1\
            3&-1&1&-1&-1\
            4&1&1&-1&1
            end{array}$$

            There are total $3^4$ possible ways for $a,b,c,din {-1,0,1}$.



            Hence the required probability is:
            $$P=frac{n(text{favorable})}{n(text{total})}=frac4{81}.$$






            share|cite|improve this answer











            $endgroup$



            Yes, you are correct!



            Since $A$ is non-singular:
            $$A^2B=A iff AB=I iff \
            B=A^{-1}=frac{1}{ad-bc}
            begin{pmatrix}
            d & -b\
            -c & a
            end{pmatrix};\
            A+B=begin{pmatrix}a+frac{d}{ad-bc}&b-frac{b}{ad-bc}\ c-frac{c}{ad-bc}&d+frac{a}{ad-bc}end{pmatrix}.$$

            So:
            $$det(A)+det(B)=ad-bc+frac{1}{(ad-bc)^2}(ad-bc)=frac{(ad-bc)^2+1}{ad-bc};\
            det(A+B)=ad+frac{a^2+d^2}{ad-bc}+frac{ad}{(ad-bc)^2}-bc+frac{2bc}{ad-bc}-frac{bc}{(ad-bc)^2};\
            det(A)+det(B)=det(A+B) Rightarrow \
            (ad-bc)^2+1=(ad-bc)^2+a^2+d^2+2bc+1 Rightarrow \
            a^2+d^2=-2bc.$$

            Note that $adne bc$ and the RHS must be positive. Then the favorable outcomes are:
            $$begin{array}{r|r|r|r}
            N&a&b&c&d\
            hline
            1&-1&-1&1&-1\
            2&1&-1&1&1\
            3&-1&1&-1&-1\
            4&1&1&-1&1
            end{array}$$

            There are total $3^4$ possible ways for $a,b,c,din {-1,0,1}$.



            Hence the required probability is:
            $$P=frac{n(text{favorable})}{n(text{total})}=frac4{81}.$$







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Jan 1 at 9:20

























            answered Jan 1 at 9:00









            farruhotafarruhota

            21.6k2842




            21.6k2842












            • $begingroup$
              Thanks so much! Btw in the outcome N=2,3,6,7 wouldn’t it give ad=bc?? In which it would make it a singular matrix?
              $endgroup$
              – Thenewending
              Jan 1 at 9:17












            • $begingroup$
              Yes, we must reject those cases, fixed.
              $endgroup$
              – farruhota
              Jan 1 at 9:20


















            • $begingroup$
              Thanks so much! Btw in the outcome N=2,3,6,7 wouldn’t it give ad=bc?? In which it would make it a singular matrix?
              $endgroup$
              – Thenewending
              Jan 1 at 9:17












            • $begingroup$
              Yes, we must reject those cases, fixed.
              $endgroup$
              – farruhota
              Jan 1 at 9:20
















            $begingroup$
            Thanks so much! Btw in the outcome N=2,3,6,7 wouldn’t it give ad=bc?? In which it would make it a singular matrix?
            $endgroup$
            – Thenewending
            Jan 1 at 9:17






            $begingroup$
            Thanks so much! Btw in the outcome N=2,3,6,7 wouldn’t it give ad=bc?? In which it would make it a singular matrix?
            $endgroup$
            – Thenewending
            Jan 1 at 9:17














            $begingroup$
            Yes, we must reject those cases, fixed.
            $endgroup$
            – farruhota
            Jan 1 at 9:20




            $begingroup$
            Yes, we must reject those cases, fixed.
            $endgroup$
            – farruhota
            Jan 1 at 9:20











            0












            $begingroup$

            Use $$det(A)det(A+B)= det (A)(det(A)+det(B))$$



            so $$ det (A(A+B)) = det (A^2)+det (AB)$$



            so $$ det (A^2+I) = det (A^2)+1$$



            since $$ A^2= begin{bmatrix} a^2+bc & b(a+d) \ c(a+d) & d^2+bc \ end{bmatrix} = begin{bmatrix} x & y \ z & t \ end{bmatrix}$$



            we get $$(x+1)(t+1)-yz = xt-yz+1implies x+t=0$$



            so $$a^2+d^2+2bc=0$$






            share|cite|improve this answer











            $endgroup$


















              0












              $begingroup$

              Use $$det(A)det(A+B)= det (A)(det(A)+det(B))$$



              so $$ det (A(A+B)) = det (A^2)+det (AB)$$



              so $$ det (A^2+I) = det (A^2)+1$$



              since $$ A^2= begin{bmatrix} a^2+bc & b(a+d) \ c(a+d) & d^2+bc \ end{bmatrix} = begin{bmatrix} x & y \ z & t \ end{bmatrix}$$



              we get $$(x+1)(t+1)-yz = xt-yz+1implies x+t=0$$



              so $$a^2+d^2+2bc=0$$






              share|cite|improve this answer











              $endgroup$
















                0












                0








                0





                $begingroup$

                Use $$det(A)det(A+B)= det (A)(det(A)+det(B))$$



                so $$ det (A(A+B)) = det (A^2)+det (AB)$$



                so $$ det (A^2+I) = det (A^2)+1$$



                since $$ A^2= begin{bmatrix} a^2+bc & b(a+d) \ c(a+d) & d^2+bc \ end{bmatrix} = begin{bmatrix} x & y \ z & t \ end{bmatrix}$$



                we get $$(x+1)(t+1)-yz = xt-yz+1implies x+t=0$$



                so $$a^2+d^2+2bc=0$$






                share|cite|improve this answer











                $endgroup$



                Use $$det(A)det(A+B)= det (A)(det(A)+det(B))$$



                so $$ det (A(A+B)) = det (A^2)+det (AB)$$



                so $$ det (A^2+I) = det (A^2)+1$$



                since $$ A^2= begin{bmatrix} a^2+bc & b(a+d) \ c(a+d) & d^2+bc \ end{bmatrix} = begin{bmatrix} x & y \ z & t \ end{bmatrix}$$



                we get $$(x+1)(t+1)-yz = xt-yz+1implies x+t=0$$



                so $$a^2+d^2+2bc=0$$







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Jan 1 at 9:14

























                answered Jan 1 at 9:09









                Maria MazurMaria Mazur

                48.7k1260122




                48.7k1260122






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058263%2fmatrices-and-probability-question%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    How do I know what Microsoft account the skydrive app is syncing to?

                    When does type information flow backwards in C++?

                    Grease: Live!