Matrices and Probability question
$begingroup$
Question:
Let Matrix $A$ be a non-singular Matrix and satisfies with Matrix $B$ such that $A^2B=A$ . Given $S={-1,0,1}$ and
$$ A= begin{bmatrix} a & b \ c & d \ end{bmatrix} $$
in which $a,b,c,din S $ . What is the probability that $det(A+B)=detA + detB $
I did manage to work out and get the equation $a^2+d^2=-2bc$ and calculate $frac{8}{81}$? But i'm not sure if its the correct answer.
linear-algebra probability matrices
$endgroup$
add a comment |
$begingroup$
Question:
Let Matrix $A$ be a non-singular Matrix and satisfies with Matrix $B$ such that $A^2B=A$ . Given $S={-1,0,1}$ and
$$ A= begin{bmatrix} a & b \ c & d \ end{bmatrix} $$
in which $a,b,c,din S $ . What is the probability that $det(A+B)=detA + detB $
I did manage to work out and get the equation $a^2+d^2=-2bc$ and calculate $frac{8}{81}$? But i'm not sure if its the correct answer.
linear-algebra probability matrices
$endgroup$
add a comment |
$begingroup$
Question:
Let Matrix $A$ be a non-singular Matrix and satisfies with Matrix $B$ such that $A^2B=A$ . Given $S={-1,0,1}$ and
$$ A= begin{bmatrix} a & b \ c & d \ end{bmatrix} $$
in which $a,b,c,din S $ . What is the probability that $det(A+B)=detA + detB $
I did manage to work out and get the equation $a^2+d^2=-2bc$ and calculate $frac{8}{81}$? But i'm not sure if its the correct answer.
linear-algebra probability matrices
$endgroup$
Question:
Let Matrix $A$ be a non-singular Matrix and satisfies with Matrix $B$ such that $A^2B=A$ . Given $S={-1,0,1}$ and
$$ A= begin{bmatrix} a & b \ c & d \ end{bmatrix} $$
in which $a,b,c,din S $ . What is the probability that $det(A+B)=detA + detB $
I did manage to work out and get the equation $a^2+d^2=-2bc$ and calculate $frac{8}{81}$? But i'm not sure if its the correct answer.
linear-algebra probability matrices
linear-algebra probability matrices
edited Jan 1 at 9:15
Maria Mazur
48.7k1260122
48.7k1260122
asked Jan 1 at 7:17
ThenewendingThenewending
61
61
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Yes, you are correct!
Since $A$ is non-singular:
$$A^2B=A iff AB=I iff \
B=A^{-1}=frac{1}{ad-bc}
begin{pmatrix}
d & -b\
-c & a
end{pmatrix};\
A+B=begin{pmatrix}a+frac{d}{ad-bc}&b-frac{b}{ad-bc}\ c-frac{c}{ad-bc}&d+frac{a}{ad-bc}end{pmatrix}.$$
So:
$$det(A)+det(B)=ad-bc+frac{1}{(ad-bc)^2}(ad-bc)=frac{(ad-bc)^2+1}{ad-bc};\
det(A+B)=ad+frac{a^2+d^2}{ad-bc}+frac{ad}{(ad-bc)^2}-bc+frac{2bc}{ad-bc}-frac{bc}{(ad-bc)^2};\
det(A)+det(B)=det(A+B) Rightarrow \
(ad-bc)^2+1=(ad-bc)^2+a^2+d^2+2bc+1 Rightarrow \
a^2+d^2=-2bc.$$
Note that $adne bc$ and the RHS must be positive. Then the favorable outcomes are:
$$begin{array}{r|r|r|r}
N&a&b&c&d\
hline
1&-1&-1&1&-1\
2&1&-1&1&1\
3&-1&1&-1&-1\
4&1&1&-1&1
end{array}$$
There are total $3^4$ possible ways for $a,b,c,din {-1,0,1}$.
Hence the required probability is:
$$P=frac{n(text{favorable})}{n(text{total})}=frac4{81}.$$
$endgroup$
$begingroup$
Thanks so much! Btw in the outcome N=2,3,6,7 wouldn’t it give ad=bc?? In which it would make it a singular matrix?
$endgroup$
– Thenewending
Jan 1 at 9:17
$begingroup$
Yes, we must reject those cases, fixed.
$endgroup$
– farruhota
Jan 1 at 9:20
add a comment |
$begingroup$
Use $$det(A)det(A+B)= det (A)(det(A)+det(B))$$
so $$ det (A(A+B)) = det (A^2)+det (AB)$$
so $$ det (A^2+I) = det (A^2)+1$$
since $$ A^2= begin{bmatrix} a^2+bc & b(a+d) \ c(a+d) & d^2+bc \ end{bmatrix} = begin{bmatrix} x & y \ z & t \ end{bmatrix}$$
we get $$(x+1)(t+1)-yz = xt-yz+1implies x+t=0$$
so $$a^2+d^2+2bc=0$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058263%2fmatrices-and-probability-question%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Yes, you are correct!
Since $A$ is non-singular:
$$A^2B=A iff AB=I iff \
B=A^{-1}=frac{1}{ad-bc}
begin{pmatrix}
d & -b\
-c & a
end{pmatrix};\
A+B=begin{pmatrix}a+frac{d}{ad-bc}&b-frac{b}{ad-bc}\ c-frac{c}{ad-bc}&d+frac{a}{ad-bc}end{pmatrix}.$$
So:
$$det(A)+det(B)=ad-bc+frac{1}{(ad-bc)^2}(ad-bc)=frac{(ad-bc)^2+1}{ad-bc};\
det(A+B)=ad+frac{a^2+d^2}{ad-bc}+frac{ad}{(ad-bc)^2}-bc+frac{2bc}{ad-bc}-frac{bc}{(ad-bc)^2};\
det(A)+det(B)=det(A+B) Rightarrow \
(ad-bc)^2+1=(ad-bc)^2+a^2+d^2+2bc+1 Rightarrow \
a^2+d^2=-2bc.$$
Note that $adne bc$ and the RHS must be positive. Then the favorable outcomes are:
$$begin{array}{r|r|r|r}
N&a&b&c&d\
hline
1&-1&-1&1&-1\
2&1&-1&1&1\
3&-1&1&-1&-1\
4&1&1&-1&1
end{array}$$
There are total $3^4$ possible ways for $a,b,c,din {-1,0,1}$.
Hence the required probability is:
$$P=frac{n(text{favorable})}{n(text{total})}=frac4{81}.$$
$endgroup$
$begingroup$
Thanks so much! Btw in the outcome N=2,3,6,7 wouldn’t it give ad=bc?? In which it would make it a singular matrix?
$endgroup$
– Thenewending
Jan 1 at 9:17
$begingroup$
Yes, we must reject those cases, fixed.
$endgroup$
– farruhota
Jan 1 at 9:20
add a comment |
$begingroup$
Yes, you are correct!
Since $A$ is non-singular:
$$A^2B=A iff AB=I iff \
B=A^{-1}=frac{1}{ad-bc}
begin{pmatrix}
d & -b\
-c & a
end{pmatrix};\
A+B=begin{pmatrix}a+frac{d}{ad-bc}&b-frac{b}{ad-bc}\ c-frac{c}{ad-bc}&d+frac{a}{ad-bc}end{pmatrix}.$$
So:
$$det(A)+det(B)=ad-bc+frac{1}{(ad-bc)^2}(ad-bc)=frac{(ad-bc)^2+1}{ad-bc};\
det(A+B)=ad+frac{a^2+d^2}{ad-bc}+frac{ad}{(ad-bc)^2}-bc+frac{2bc}{ad-bc}-frac{bc}{(ad-bc)^2};\
det(A)+det(B)=det(A+B) Rightarrow \
(ad-bc)^2+1=(ad-bc)^2+a^2+d^2+2bc+1 Rightarrow \
a^2+d^2=-2bc.$$
Note that $adne bc$ and the RHS must be positive. Then the favorable outcomes are:
$$begin{array}{r|r|r|r}
N&a&b&c&d\
hline
1&-1&-1&1&-1\
2&1&-1&1&1\
3&-1&1&-1&-1\
4&1&1&-1&1
end{array}$$
There are total $3^4$ possible ways for $a,b,c,din {-1,0,1}$.
Hence the required probability is:
$$P=frac{n(text{favorable})}{n(text{total})}=frac4{81}.$$
$endgroup$
$begingroup$
Thanks so much! Btw in the outcome N=2,3,6,7 wouldn’t it give ad=bc?? In which it would make it a singular matrix?
$endgroup$
– Thenewending
Jan 1 at 9:17
$begingroup$
Yes, we must reject those cases, fixed.
$endgroup$
– farruhota
Jan 1 at 9:20
add a comment |
$begingroup$
Yes, you are correct!
Since $A$ is non-singular:
$$A^2B=A iff AB=I iff \
B=A^{-1}=frac{1}{ad-bc}
begin{pmatrix}
d & -b\
-c & a
end{pmatrix};\
A+B=begin{pmatrix}a+frac{d}{ad-bc}&b-frac{b}{ad-bc}\ c-frac{c}{ad-bc}&d+frac{a}{ad-bc}end{pmatrix}.$$
So:
$$det(A)+det(B)=ad-bc+frac{1}{(ad-bc)^2}(ad-bc)=frac{(ad-bc)^2+1}{ad-bc};\
det(A+B)=ad+frac{a^2+d^2}{ad-bc}+frac{ad}{(ad-bc)^2}-bc+frac{2bc}{ad-bc}-frac{bc}{(ad-bc)^2};\
det(A)+det(B)=det(A+B) Rightarrow \
(ad-bc)^2+1=(ad-bc)^2+a^2+d^2+2bc+1 Rightarrow \
a^2+d^2=-2bc.$$
Note that $adne bc$ and the RHS must be positive. Then the favorable outcomes are:
$$begin{array}{r|r|r|r}
N&a&b&c&d\
hline
1&-1&-1&1&-1\
2&1&-1&1&1\
3&-1&1&-1&-1\
4&1&1&-1&1
end{array}$$
There are total $3^4$ possible ways for $a,b,c,din {-1,0,1}$.
Hence the required probability is:
$$P=frac{n(text{favorable})}{n(text{total})}=frac4{81}.$$
$endgroup$
Yes, you are correct!
Since $A$ is non-singular:
$$A^2B=A iff AB=I iff \
B=A^{-1}=frac{1}{ad-bc}
begin{pmatrix}
d & -b\
-c & a
end{pmatrix};\
A+B=begin{pmatrix}a+frac{d}{ad-bc}&b-frac{b}{ad-bc}\ c-frac{c}{ad-bc}&d+frac{a}{ad-bc}end{pmatrix}.$$
So:
$$det(A)+det(B)=ad-bc+frac{1}{(ad-bc)^2}(ad-bc)=frac{(ad-bc)^2+1}{ad-bc};\
det(A+B)=ad+frac{a^2+d^2}{ad-bc}+frac{ad}{(ad-bc)^2}-bc+frac{2bc}{ad-bc}-frac{bc}{(ad-bc)^2};\
det(A)+det(B)=det(A+B) Rightarrow \
(ad-bc)^2+1=(ad-bc)^2+a^2+d^2+2bc+1 Rightarrow \
a^2+d^2=-2bc.$$
Note that $adne bc$ and the RHS must be positive. Then the favorable outcomes are:
$$begin{array}{r|r|r|r}
N&a&b&c&d\
hline
1&-1&-1&1&-1\
2&1&-1&1&1\
3&-1&1&-1&-1\
4&1&1&-1&1
end{array}$$
There are total $3^4$ possible ways for $a,b,c,din {-1,0,1}$.
Hence the required probability is:
$$P=frac{n(text{favorable})}{n(text{total})}=frac4{81}.$$
edited Jan 1 at 9:20
answered Jan 1 at 9:00
farruhotafarruhota
21.6k2842
21.6k2842
$begingroup$
Thanks so much! Btw in the outcome N=2,3,6,7 wouldn’t it give ad=bc?? In which it would make it a singular matrix?
$endgroup$
– Thenewending
Jan 1 at 9:17
$begingroup$
Yes, we must reject those cases, fixed.
$endgroup$
– farruhota
Jan 1 at 9:20
add a comment |
$begingroup$
Thanks so much! Btw in the outcome N=2,3,6,7 wouldn’t it give ad=bc?? In which it would make it a singular matrix?
$endgroup$
– Thenewending
Jan 1 at 9:17
$begingroup$
Yes, we must reject those cases, fixed.
$endgroup$
– farruhota
Jan 1 at 9:20
$begingroup$
Thanks so much! Btw in the outcome N=2,3,6,7 wouldn’t it give ad=bc?? In which it would make it a singular matrix?
$endgroup$
– Thenewending
Jan 1 at 9:17
$begingroup$
Thanks so much! Btw in the outcome N=2,3,6,7 wouldn’t it give ad=bc?? In which it would make it a singular matrix?
$endgroup$
– Thenewending
Jan 1 at 9:17
$begingroup$
Yes, we must reject those cases, fixed.
$endgroup$
– farruhota
Jan 1 at 9:20
$begingroup$
Yes, we must reject those cases, fixed.
$endgroup$
– farruhota
Jan 1 at 9:20
add a comment |
$begingroup$
Use $$det(A)det(A+B)= det (A)(det(A)+det(B))$$
so $$ det (A(A+B)) = det (A^2)+det (AB)$$
so $$ det (A^2+I) = det (A^2)+1$$
since $$ A^2= begin{bmatrix} a^2+bc & b(a+d) \ c(a+d) & d^2+bc \ end{bmatrix} = begin{bmatrix} x & y \ z & t \ end{bmatrix}$$
we get $$(x+1)(t+1)-yz = xt-yz+1implies x+t=0$$
so $$a^2+d^2+2bc=0$$
$endgroup$
add a comment |
$begingroup$
Use $$det(A)det(A+B)= det (A)(det(A)+det(B))$$
so $$ det (A(A+B)) = det (A^2)+det (AB)$$
so $$ det (A^2+I) = det (A^2)+1$$
since $$ A^2= begin{bmatrix} a^2+bc & b(a+d) \ c(a+d) & d^2+bc \ end{bmatrix} = begin{bmatrix} x & y \ z & t \ end{bmatrix}$$
we get $$(x+1)(t+1)-yz = xt-yz+1implies x+t=0$$
so $$a^2+d^2+2bc=0$$
$endgroup$
add a comment |
$begingroup$
Use $$det(A)det(A+B)= det (A)(det(A)+det(B))$$
so $$ det (A(A+B)) = det (A^2)+det (AB)$$
so $$ det (A^2+I) = det (A^2)+1$$
since $$ A^2= begin{bmatrix} a^2+bc & b(a+d) \ c(a+d) & d^2+bc \ end{bmatrix} = begin{bmatrix} x & y \ z & t \ end{bmatrix}$$
we get $$(x+1)(t+1)-yz = xt-yz+1implies x+t=0$$
so $$a^2+d^2+2bc=0$$
$endgroup$
Use $$det(A)det(A+B)= det (A)(det(A)+det(B))$$
so $$ det (A(A+B)) = det (A^2)+det (AB)$$
so $$ det (A^2+I) = det (A^2)+1$$
since $$ A^2= begin{bmatrix} a^2+bc & b(a+d) \ c(a+d) & d^2+bc \ end{bmatrix} = begin{bmatrix} x & y \ z & t \ end{bmatrix}$$
we get $$(x+1)(t+1)-yz = xt-yz+1implies x+t=0$$
so $$a^2+d^2+2bc=0$$
edited Jan 1 at 9:14
answered Jan 1 at 9:09
Maria MazurMaria Mazur
48.7k1260122
48.7k1260122
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058263%2fmatrices-and-probability-question%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown