Concerning this sum $sum_{n=0}^{infty}frac{1}{4n+1}left[frac{1}{4^n}{2n choose...












10












$begingroup$


I was looking at this paper and saw this nice sum in section [12] of the paper,




$$sum_{n=0}^{infty}frac{1}{4n+1}left[frac{1}{4^n}{2n choose n}right]^2=frac{Gamma^4left(frac{1}{4}right)}{16pi^2}tag1$$




out of curiosity I conjectured the following two sums



$$begin{align*}
sum_{n=0}^{infty}frac{(-1)^n}{(2n-1)^2}left[frac{1}{4^n}{2n choose n}right]^2&=frac{4sqrt{2pi}}{Gamma^2left(frac{1}{4}right)}tag2\
sum_{n=0}^{infty}(-1)^nfrac{n^2}{(2n-1)^2}left[frac{1}{4^n}{2n choose n}right]^2&=-frac{Gamma^2left(frac{1}{4}right)}{8pisqrt{2pi}}tag3
end{align*}$$



I am unable to prove them.



How do we go about to prove these two sums?










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    What made you conjecture them?
    $endgroup$
    – clathratus
    Jan 1 at 8:35










  • $begingroup$
    I suppose that,as in the linked paper, we would need to use hypergeometric functions first summing from $0$ to $p$.
    $endgroup$
    – Claude Leibovici
    Jan 1 at 9:15












  • $begingroup$
    +1 for link to the nice paper. May be Jack D'Aurizio can shed some light on your conjectured identities.
    $endgroup$
    – Paramanand Singh
    Jan 1 at 15:41












  • $begingroup$
    All the given series can be written in terms of the moments of $K(x)$ or $E(x)$, i.e. $int_{0}^{1}x^eta K(x),dx$ and $int_{0}^{1}x^eta E(x),dx$. Since the complete elliptic integrals have simple Fourier-Legendre expansions, these identities can be proved through harmonic analysis, too. That's the whole point of the paper in a nutshell ;)
    $endgroup$
    – Jack D'Aurizio
    Jan 1 at 20:28
















10












$begingroup$


I was looking at this paper and saw this nice sum in section [12] of the paper,




$$sum_{n=0}^{infty}frac{1}{4n+1}left[frac{1}{4^n}{2n choose n}right]^2=frac{Gamma^4left(frac{1}{4}right)}{16pi^2}tag1$$




out of curiosity I conjectured the following two sums



$$begin{align*}
sum_{n=0}^{infty}frac{(-1)^n}{(2n-1)^2}left[frac{1}{4^n}{2n choose n}right]^2&=frac{4sqrt{2pi}}{Gamma^2left(frac{1}{4}right)}tag2\
sum_{n=0}^{infty}(-1)^nfrac{n^2}{(2n-1)^2}left[frac{1}{4^n}{2n choose n}right]^2&=-frac{Gamma^2left(frac{1}{4}right)}{8pisqrt{2pi}}tag3
end{align*}$$



I am unable to prove them.



How do we go about to prove these two sums?










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    What made you conjecture them?
    $endgroup$
    – clathratus
    Jan 1 at 8:35










  • $begingroup$
    I suppose that,as in the linked paper, we would need to use hypergeometric functions first summing from $0$ to $p$.
    $endgroup$
    – Claude Leibovici
    Jan 1 at 9:15












  • $begingroup$
    +1 for link to the nice paper. May be Jack D'Aurizio can shed some light on your conjectured identities.
    $endgroup$
    – Paramanand Singh
    Jan 1 at 15:41












  • $begingroup$
    All the given series can be written in terms of the moments of $K(x)$ or $E(x)$, i.e. $int_{0}^{1}x^eta K(x),dx$ and $int_{0}^{1}x^eta E(x),dx$. Since the complete elliptic integrals have simple Fourier-Legendre expansions, these identities can be proved through harmonic analysis, too. That's the whole point of the paper in a nutshell ;)
    $endgroup$
    – Jack D'Aurizio
    Jan 1 at 20:28














10












10








10


5



$begingroup$


I was looking at this paper and saw this nice sum in section [12] of the paper,




$$sum_{n=0}^{infty}frac{1}{4n+1}left[frac{1}{4^n}{2n choose n}right]^2=frac{Gamma^4left(frac{1}{4}right)}{16pi^2}tag1$$




out of curiosity I conjectured the following two sums



$$begin{align*}
sum_{n=0}^{infty}frac{(-1)^n}{(2n-1)^2}left[frac{1}{4^n}{2n choose n}right]^2&=frac{4sqrt{2pi}}{Gamma^2left(frac{1}{4}right)}tag2\
sum_{n=0}^{infty}(-1)^nfrac{n^2}{(2n-1)^2}left[frac{1}{4^n}{2n choose n}right]^2&=-frac{Gamma^2left(frac{1}{4}right)}{8pisqrt{2pi}}tag3
end{align*}$$



I am unable to prove them.



How do we go about to prove these two sums?










share|cite|improve this question











$endgroup$




I was looking at this paper and saw this nice sum in section [12] of the paper,




$$sum_{n=0}^{infty}frac{1}{4n+1}left[frac{1}{4^n}{2n choose n}right]^2=frac{Gamma^4left(frac{1}{4}right)}{16pi^2}tag1$$




out of curiosity I conjectured the following two sums



$$begin{align*}
sum_{n=0}^{infty}frac{(-1)^n}{(2n-1)^2}left[frac{1}{4^n}{2n choose n}right]^2&=frac{4sqrt{2pi}}{Gamma^2left(frac{1}{4}right)}tag2\
sum_{n=0}^{infty}(-1)^nfrac{n^2}{(2n-1)^2}left[frac{1}{4^n}{2n choose n}right]^2&=-frac{Gamma^2left(frac{1}{4}right)}{8pisqrt{2pi}}tag3
end{align*}$$



I am unable to prove them.



How do we go about to prove these two sums?







sequences-and-series






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 7 at 0:02









mrtaurho

6,08771641




6,08771641










asked Jan 1 at 8:17









user583851user583851

518110




518110








  • 2




    $begingroup$
    What made you conjecture them?
    $endgroup$
    – clathratus
    Jan 1 at 8:35










  • $begingroup$
    I suppose that,as in the linked paper, we would need to use hypergeometric functions first summing from $0$ to $p$.
    $endgroup$
    – Claude Leibovici
    Jan 1 at 9:15












  • $begingroup$
    +1 for link to the nice paper. May be Jack D'Aurizio can shed some light on your conjectured identities.
    $endgroup$
    – Paramanand Singh
    Jan 1 at 15:41












  • $begingroup$
    All the given series can be written in terms of the moments of $K(x)$ or $E(x)$, i.e. $int_{0}^{1}x^eta K(x),dx$ and $int_{0}^{1}x^eta E(x),dx$. Since the complete elliptic integrals have simple Fourier-Legendre expansions, these identities can be proved through harmonic analysis, too. That's the whole point of the paper in a nutshell ;)
    $endgroup$
    – Jack D'Aurizio
    Jan 1 at 20:28














  • 2




    $begingroup$
    What made you conjecture them?
    $endgroup$
    – clathratus
    Jan 1 at 8:35










  • $begingroup$
    I suppose that,as in the linked paper, we would need to use hypergeometric functions first summing from $0$ to $p$.
    $endgroup$
    – Claude Leibovici
    Jan 1 at 9:15












  • $begingroup$
    +1 for link to the nice paper. May be Jack D'Aurizio can shed some light on your conjectured identities.
    $endgroup$
    – Paramanand Singh
    Jan 1 at 15:41












  • $begingroup$
    All the given series can be written in terms of the moments of $K(x)$ or $E(x)$, i.e. $int_{0}^{1}x^eta K(x),dx$ and $int_{0}^{1}x^eta E(x),dx$. Since the complete elliptic integrals have simple Fourier-Legendre expansions, these identities can be proved through harmonic analysis, too. That's the whole point of the paper in a nutshell ;)
    $endgroup$
    – Jack D'Aurizio
    Jan 1 at 20:28








2




2




$begingroup$
What made you conjecture them?
$endgroup$
– clathratus
Jan 1 at 8:35




$begingroup$
What made you conjecture them?
$endgroup$
– clathratus
Jan 1 at 8:35












$begingroup$
I suppose that,as in the linked paper, we would need to use hypergeometric functions first summing from $0$ to $p$.
$endgroup$
– Claude Leibovici
Jan 1 at 9:15






$begingroup$
I suppose that,as in the linked paper, we would need to use hypergeometric functions first summing from $0$ to $p$.
$endgroup$
– Claude Leibovici
Jan 1 at 9:15














$begingroup$
+1 for link to the nice paper. May be Jack D'Aurizio can shed some light on your conjectured identities.
$endgroup$
– Paramanand Singh
Jan 1 at 15:41






$begingroup$
+1 for link to the nice paper. May be Jack D'Aurizio can shed some light on your conjectured identities.
$endgroup$
– Paramanand Singh
Jan 1 at 15:41














$begingroup$
All the given series can be written in terms of the moments of $K(x)$ or $E(x)$, i.e. $int_{0}^{1}x^eta K(x),dx$ and $int_{0}^{1}x^eta E(x),dx$. Since the complete elliptic integrals have simple Fourier-Legendre expansions, these identities can be proved through harmonic analysis, too. That's the whole point of the paper in a nutshell ;)
$endgroup$
– Jack D'Aurizio
Jan 1 at 20:28




$begingroup$
All the given series can be written in terms of the moments of $K(x)$ or $E(x)$, i.e. $int_{0}^{1}x^eta K(x),dx$ and $int_{0}^{1}x^eta E(x),dx$. Since the complete elliptic integrals have simple Fourier-Legendre expansions, these identities can be proved through harmonic analysis, too. That's the whole point of the paper in a nutshell ;)
$endgroup$
– Jack D'Aurizio
Jan 1 at 20:28










1 Answer
1






active

oldest

votes


















10












$begingroup$

From the beautiful answer by @robjohn, we learn
begin{equation}
sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac{r^{2k-1}}{(2k-1)^2}
=frac2{pi r}int_0^1frac{left(rxarcsin(rx)+sqrt{1-r^2x^2}right),mathrm{d}x}{sqrt{1-x^2}}
end{equation}

Plugging in $r=i$,
begin{align}
sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac{(-1)^k}{(2k-1)^2}
&=frac{2}{pi}int_0^1frac{left(ixarcsin(ix)+sqrt{1+x^2}right),mathrm{d}x}{sqrt{1-x^2}}\
&=frac{2}{pi}int_0^1frac{sqrt{1+x^2}-xsinh^{-1}(x)}{sqrt{1-x^2}},mathrm{d}x\
&=frac{2}{pi}int_0^1left[ frac{sqrt{1+x^2}}{sqrt{1-x^2}}-frac{sqrt{1-x^2}}{sqrt{1+x^2}}right],mathrm{d}x\
&=frac{4}{pi}int_0^1 frac{x^2}{sqrt{1-x^4}},mathrm{d}x\
&=frac{1}{pi}Bleft( frac{3}{4},frac{1}{2} right)\
&=frac{4sqrt{2pi}}{Gamma^2left( frac{1}{4} right)}
end{align}

(the integration of the $sinh^{-1}$ term was made by parts).



For the second expression, we decompose
begin{equation}
frac{n^2}{left( 2n-1 right)^2}=frac{1}{4}+frac{1}{2}frac{1}{2n-1}+frac{1}{4}frac{1}{left( 2n-1 right)^2}
end{equation}

From the linked answer we have also
begin{equation}
sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac{r^{2k-1}}{2k-1}
=frac1{pi r}int_0^1frac{-sqrt{1-r^2x},mathrm{d}x}{sqrt{x(1-x)}}
end{equation}

and thus, with $r=i$
begin{align}
sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac{(-1)^k}{2k-1}
&=-frac1{pi }int_0^1frac{sqrt{1+x},mathrm{d}x}{sqrt{x(1-x)}}\
&=-frac2{pi }int_0^1frac{sqrt{1+t^2}}{sqrt{1-t^2}},mathrm{d}t\
&=-frac{2sqrt{2}}{pi}Eleft( frac{1}{sqrt{2}} right)\
&=-frac{2sqrt{2}}{pi}left[ frac{Gamma^2left( frac{1}{4} right)}{8sqrt{pi}}+frac{pi^{3/2}}{Gamma^2left( frac{1}{4} right)}right]
end{align}

where the singular value $k_1$ for the elliptic integral is used. We may also express from the answer
begin{equation}
sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}r^{2k}
=frac1piint_0^1frac{mathrm{d}x}{sqrt{1-r^2x}sqrt{x(1-x)}}
end{equation}

which, with $r=i$ again, gives
begin{align}
sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}(-1)^{k}
&=frac1piint_0^1frac{mathrm{d}x}{sqrt{1+x}sqrt{x(1-x)}}\
&=frac2piint_0^1frac{dt}{sqrt{1-t^4}}\
&=frac{1}{2pi}Bleft(frac{1}{4}, frac{1}{2} right)\
&=frac{sqrt{2pi}}{2Gamma^2left(frac{3}{4}right)}
end{align}

Then,
begin{align}
S&=sum_{n=0}^{infty}frac{(-1)^nn^2}{(2n-1)^2}left[frac{1}{4^n}{2n choose n}right]^2\
&=frac{sqrt{2pi}}{8Gamma^2left(frac{3}{4}right)}
-frac{sqrt{2}}{pi}left[ frac{Gamma^2left( frac{1}{4} right)}{8sqrt{pi}}+frac{pi^{3/2}}{Gamma^2left( frac{1}{4} right)}right]+frac{sqrt{2pi}}{Gamma^2left( frac{1}{4} right)}
end{align}

Using the reflection formula $Gamma(3/4)Gamma(1/4)=pisqrt{2}$, we obtain finally
begin{equation}
S=-frac{Gamma^2left( frac{1}{4} right)}{8sqrt2pi^{3/2}}
end{equation}

as expected.



Edit (simpler derivation for the second expression)



For the second expression, it is easier to leave the integrals unevaluated in the decomposition:
begin{equation}
S=int_0^1left[frac{1}{2pi}frac{1}{sqrt{1-x^4}}-frac{1}{pi}sqrt{frac{1+x^2}{1-x^2}}+frac{1}{pi}frac{x^2}{sqrt{1-x^4}} right],dx
end{equation}

or
begin{align}
S&=-frac{1}{2pi}int_0^1frac{dx}{sqrt{1-x^4}}\
&=-frac{1}{8pi}int_0^1 left( 1-u right)^{-1/2}u^{-3/4},du\
&=-frac{Bleft( frac{1}{4},frac{1}{2} right)}{8pi}
end{align}

and the result follows from the $Gamma$ reflection formula.






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058278%2fconcerning-this-sum-sum-n-0-infty-frac14n1-left-frac14n2n-ch%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    10












    $begingroup$

    From the beautiful answer by @robjohn, we learn
    begin{equation}
    sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac{r^{2k-1}}{(2k-1)^2}
    =frac2{pi r}int_0^1frac{left(rxarcsin(rx)+sqrt{1-r^2x^2}right),mathrm{d}x}{sqrt{1-x^2}}
    end{equation}

    Plugging in $r=i$,
    begin{align}
    sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac{(-1)^k}{(2k-1)^2}
    &=frac{2}{pi}int_0^1frac{left(ixarcsin(ix)+sqrt{1+x^2}right),mathrm{d}x}{sqrt{1-x^2}}\
    &=frac{2}{pi}int_0^1frac{sqrt{1+x^2}-xsinh^{-1}(x)}{sqrt{1-x^2}},mathrm{d}x\
    &=frac{2}{pi}int_0^1left[ frac{sqrt{1+x^2}}{sqrt{1-x^2}}-frac{sqrt{1-x^2}}{sqrt{1+x^2}}right],mathrm{d}x\
    &=frac{4}{pi}int_0^1 frac{x^2}{sqrt{1-x^4}},mathrm{d}x\
    &=frac{1}{pi}Bleft( frac{3}{4},frac{1}{2} right)\
    &=frac{4sqrt{2pi}}{Gamma^2left( frac{1}{4} right)}
    end{align}

    (the integration of the $sinh^{-1}$ term was made by parts).



    For the second expression, we decompose
    begin{equation}
    frac{n^2}{left( 2n-1 right)^2}=frac{1}{4}+frac{1}{2}frac{1}{2n-1}+frac{1}{4}frac{1}{left( 2n-1 right)^2}
    end{equation}

    From the linked answer we have also
    begin{equation}
    sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac{r^{2k-1}}{2k-1}
    =frac1{pi r}int_0^1frac{-sqrt{1-r^2x},mathrm{d}x}{sqrt{x(1-x)}}
    end{equation}

    and thus, with $r=i$
    begin{align}
    sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac{(-1)^k}{2k-1}
    &=-frac1{pi }int_0^1frac{sqrt{1+x},mathrm{d}x}{sqrt{x(1-x)}}\
    &=-frac2{pi }int_0^1frac{sqrt{1+t^2}}{sqrt{1-t^2}},mathrm{d}t\
    &=-frac{2sqrt{2}}{pi}Eleft( frac{1}{sqrt{2}} right)\
    &=-frac{2sqrt{2}}{pi}left[ frac{Gamma^2left( frac{1}{4} right)}{8sqrt{pi}}+frac{pi^{3/2}}{Gamma^2left( frac{1}{4} right)}right]
    end{align}

    where the singular value $k_1$ for the elliptic integral is used. We may also express from the answer
    begin{equation}
    sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}r^{2k}
    =frac1piint_0^1frac{mathrm{d}x}{sqrt{1-r^2x}sqrt{x(1-x)}}
    end{equation}

    which, with $r=i$ again, gives
    begin{align}
    sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}(-1)^{k}
    &=frac1piint_0^1frac{mathrm{d}x}{sqrt{1+x}sqrt{x(1-x)}}\
    &=frac2piint_0^1frac{dt}{sqrt{1-t^4}}\
    &=frac{1}{2pi}Bleft(frac{1}{4}, frac{1}{2} right)\
    &=frac{sqrt{2pi}}{2Gamma^2left(frac{3}{4}right)}
    end{align}

    Then,
    begin{align}
    S&=sum_{n=0}^{infty}frac{(-1)^nn^2}{(2n-1)^2}left[frac{1}{4^n}{2n choose n}right]^2\
    &=frac{sqrt{2pi}}{8Gamma^2left(frac{3}{4}right)}
    -frac{sqrt{2}}{pi}left[ frac{Gamma^2left( frac{1}{4} right)}{8sqrt{pi}}+frac{pi^{3/2}}{Gamma^2left( frac{1}{4} right)}right]+frac{sqrt{2pi}}{Gamma^2left( frac{1}{4} right)}
    end{align}

    Using the reflection formula $Gamma(3/4)Gamma(1/4)=pisqrt{2}$, we obtain finally
    begin{equation}
    S=-frac{Gamma^2left( frac{1}{4} right)}{8sqrt2pi^{3/2}}
    end{equation}

    as expected.



    Edit (simpler derivation for the second expression)



    For the second expression, it is easier to leave the integrals unevaluated in the decomposition:
    begin{equation}
    S=int_0^1left[frac{1}{2pi}frac{1}{sqrt{1-x^4}}-frac{1}{pi}sqrt{frac{1+x^2}{1-x^2}}+frac{1}{pi}frac{x^2}{sqrt{1-x^4}} right],dx
    end{equation}

    or
    begin{align}
    S&=-frac{1}{2pi}int_0^1frac{dx}{sqrt{1-x^4}}\
    &=-frac{1}{8pi}int_0^1 left( 1-u right)^{-1/2}u^{-3/4},du\
    &=-frac{Bleft( frac{1}{4},frac{1}{2} right)}{8pi}
    end{align}

    and the result follows from the $Gamma$ reflection formula.






    share|cite|improve this answer











    $endgroup$


















      10












      $begingroup$

      From the beautiful answer by @robjohn, we learn
      begin{equation}
      sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac{r^{2k-1}}{(2k-1)^2}
      =frac2{pi r}int_0^1frac{left(rxarcsin(rx)+sqrt{1-r^2x^2}right),mathrm{d}x}{sqrt{1-x^2}}
      end{equation}

      Plugging in $r=i$,
      begin{align}
      sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac{(-1)^k}{(2k-1)^2}
      &=frac{2}{pi}int_0^1frac{left(ixarcsin(ix)+sqrt{1+x^2}right),mathrm{d}x}{sqrt{1-x^2}}\
      &=frac{2}{pi}int_0^1frac{sqrt{1+x^2}-xsinh^{-1}(x)}{sqrt{1-x^2}},mathrm{d}x\
      &=frac{2}{pi}int_0^1left[ frac{sqrt{1+x^2}}{sqrt{1-x^2}}-frac{sqrt{1-x^2}}{sqrt{1+x^2}}right],mathrm{d}x\
      &=frac{4}{pi}int_0^1 frac{x^2}{sqrt{1-x^4}},mathrm{d}x\
      &=frac{1}{pi}Bleft( frac{3}{4},frac{1}{2} right)\
      &=frac{4sqrt{2pi}}{Gamma^2left( frac{1}{4} right)}
      end{align}

      (the integration of the $sinh^{-1}$ term was made by parts).



      For the second expression, we decompose
      begin{equation}
      frac{n^2}{left( 2n-1 right)^2}=frac{1}{4}+frac{1}{2}frac{1}{2n-1}+frac{1}{4}frac{1}{left( 2n-1 right)^2}
      end{equation}

      From the linked answer we have also
      begin{equation}
      sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac{r^{2k-1}}{2k-1}
      =frac1{pi r}int_0^1frac{-sqrt{1-r^2x},mathrm{d}x}{sqrt{x(1-x)}}
      end{equation}

      and thus, with $r=i$
      begin{align}
      sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac{(-1)^k}{2k-1}
      &=-frac1{pi }int_0^1frac{sqrt{1+x},mathrm{d}x}{sqrt{x(1-x)}}\
      &=-frac2{pi }int_0^1frac{sqrt{1+t^2}}{sqrt{1-t^2}},mathrm{d}t\
      &=-frac{2sqrt{2}}{pi}Eleft( frac{1}{sqrt{2}} right)\
      &=-frac{2sqrt{2}}{pi}left[ frac{Gamma^2left( frac{1}{4} right)}{8sqrt{pi}}+frac{pi^{3/2}}{Gamma^2left( frac{1}{4} right)}right]
      end{align}

      where the singular value $k_1$ for the elliptic integral is used. We may also express from the answer
      begin{equation}
      sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}r^{2k}
      =frac1piint_0^1frac{mathrm{d}x}{sqrt{1-r^2x}sqrt{x(1-x)}}
      end{equation}

      which, with $r=i$ again, gives
      begin{align}
      sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}(-1)^{k}
      &=frac1piint_0^1frac{mathrm{d}x}{sqrt{1+x}sqrt{x(1-x)}}\
      &=frac2piint_0^1frac{dt}{sqrt{1-t^4}}\
      &=frac{1}{2pi}Bleft(frac{1}{4}, frac{1}{2} right)\
      &=frac{sqrt{2pi}}{2Gamma^2left(frac{3}{4}right)}
      end{align}

      Then,
      begin{align}
      S&=sum_{n=0}^{infty}frac{(-1)^nn^2}{(2n-1)^2}left[frac{1}{4^n}{2n choose n}right]^2\
      &=frac{sqrt{2pi}}{8Gamma^2left(frac{3}{4}right)}
      -frac{sqrt{2}}{pi}left[ frac{Gamma^2left( frac{1}{4} right)}{8sqrt{pi}}+frac{pi^{3/2}}{Gamma^2left( frac{1}{4} right)}right]+frac{sqrt{2pi}}{Gamma^2left( frac{1}{4} right)}
      end{align}

      Using the reflection formula $Gamma(3/4)Gamma(1/4)=pisqrt{2}$, we obtain finally
      begin{equation}
      S=-frac{Gamma^2left( frac{1}{4} right)}{8sqrt2pi^{3/2}}
      end{equation}

      as expected.



      Edit (simpler derivation for the second expression)



      For the second expression, it is easier to leave the integrals unevaluated in the decomposition:
      begin{equation}
      S=int_0^1left[frac{1}{2pi}frac{1}{sqrt{1-x^4}}-frac{1}{pi}sqrt{frac{1+x^2}{1-x^2}}+frac{1}{pi}frac{x^2}{sqrt{1-x^4}} right],dx
      end{equation}

      or
      begin{align}
      S&=-frac{1}{2pi}int_0^1frac{dx}{sqrt{1-x^4}}\
      &=-frac{1}{8pi}int_0^1 left( 1-u right)^{-1/2}u^{-3/4},du\
      &=-frac{Bleft( frac{1}{4},frac{1}{2} right)}{8pi}
      end{align}

      and the result follows from the $Gamma$ reflection formula.






      share|cite|improve this answer











      $endgroup$
















        10












        10








        10





        $begingroup$

        From the beautiful answer by @robjohn, we learn
        begin{equation}
        sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac{r^{2k-1}}{(2k-1)^2}
        =frac2{pi r}int_0^1frac{left(rxarcsin(rx)+sqrt{1-r^2x^2}right),mathrm{d}x}{sqrt{1-x^2}}
        end{equation}

        Plugging in $r=i$,
        begin{align}
        sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac{(-1)^k}{(2k-1)^2}
        &=frac{2}{pi}int_0^1frac{left(ixarcsin(ix)+sqrt{1+x^2}right),mathrm{d}x}{sqrt{1-x^2}}\
        &=frac{2}{pi}int_0^1frac{sqrt{1+x^2}-xsinh^{-1}(x)}{sqrt{1-x^2}},mathrm{d}x\
        &=frac{2}{pi}int_0^1left[ frac{sqrt{1+x^2}}{sqrt{1-x^2}}-frac{sqrt{1-x^2}}{sqrt{1+x^2}}right],mathrm{d}x\
        &=frac{4}{pi}int_0^1 frac{x^2}{sqrt{1-x^4}},mathrm{d}x\
        &=frac{1}{pi}Bleft( frac{3}{4},frac{1}{2} right)\
        &=frac{4sqrt{2pi}}{Gamma^2left( frac{1}{4} right)}
        end{align}

        (the integration of the $sinh^{-1}$ term was made by parts).



        For the second expression, we decompose
        begin{equation}
        frac{n^2}{left( 2n-1 right)^2}=frac{1}{4}+frac{1}{2}frac{1}{2n-1}+frac{1}{4}frac{1}{left( 2n-1 right)^2}
        end{equation}

        From the linked answer we have also
        begin{equation}
        sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac{r^{2k-1}}{2k-1}
        =frac1{pi r}int_0^1frac{-sqrt{1-r^2x},mathrm{d}x}{sqrt{x(1-x)}}
        end{equation}

        and thus, with $r=i$
        begin{align}
        sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac{(-1)^k}{2k-1}
        &=-frac1{pi }int_0^1frac{sqrt{1+x},mathrm{d}x}{sqrt{x(1-x)}}\
        &=-frac2{pi }int_0^1frac{sqrt{1+t^2}}{sqrt{1-t^2}},mathrm{d}t\
        &=-frac{2sqrt{2}}{pi}Eleft( frac{1}{sqrt{2}} right)\
        &=-frac{2sqrt{2}}{pi}left[ frac{Gamma^2left( frac{1}{4} right)}{8sqrt{pi}}+frac{pi^{3/2}}{Gamma^2left( frac{1}{4} right)}right]
        end{align}

        where the singular value $k_1$ for the elliptic integral is used. We may also express from the answer
        begin{equation}
        sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}r^{2k}
        =frac1piint_0^1frac{mathrm{d}x}{sqrt{1-r^2x}sqrt{x(1-x)}}
        end{equation}

        which, with $r=i$ again, gives
        begin{align}
        sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}(-1)^{k}
        &=frac1piint_0^1frac{mathrm{d}x}{sqrt{1+x}sqrt{x(1-x)}}\
        &=frac2piint_0^1frac{dt}{sqrt{1-t^4}}\
        &=frac{1}{2pi}Bleft(frac{1}{4}, frac{1}{2} right)\
        &=frac{sqrt{2pi}}{2Gamma^2left(frac{3}{4}right)}
        end{align}

        Then,
        begin{align}
        S&=sum_{n=0}^{infty}frac{(-1)^nn^2}{(2n-1)^2}left[frac{1}{4^n}{2n choose n}right]^2\
        &=frac{sqrt{2pi}}{8Gamma^2left(frac{3}{4}right)}
        -frac{sqrt{2}}{pi}left[ frac{Gamma^2left( frac{1}{4} right)}{8sqrt{pi}}+frac{pi^{3/2}}{Gamma^2left( frac{1}{4} right)}right]+frac{sqrt{2pi}}{Gamma^2left( frac{1}{4} right)}
        end{align}

        Using the reflection formula $Gamma(3/4)Gamma(1/4)=pisqrt{2}$, we obtain finally
        begin{equation}
        S=-frac{Gamma^2left( frac{1}{4} right)}{8sqrt2pi^{3/2}}
        end{equation}

        as expected.



        Edit (simpler derivation for the second expression)



        For the second expression, it is easier to leave the integrals unevaluated in the decomposition:
        begin{equation}
        S=int_0^1left[frac{1}{2pi}frac{1}{sqrt{1-x^4}}-frac{1}{pi}sqrt{frac{1+x^2}{1-x^2}}+frac{1}{pi}frac{x^2}{sqrt{1-x^4}} right],dx
        end{equation}

        or
        begin{align}
        S&=-frac{1}{2pi}int_0^1frac{dx}{sqrt{1-x^4}}\
        &=-frac{1}{8pi}int_0^1 left( 1-u right)^{-1/2}u^{-3/4},du\
        &=-frac{Bleft( frac{1}{4},frac{1}{2} right)}{8pi}
        end{align}

        and the result follows from the $Gamma$ reflection formula.






        share|cite|improve this answer











        $endgroup$



        From the beautiful answer by @robjohn, we learn
        begin{equation}
        sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac{r^{2k-1}}{(2k-1)^2}
        =frac2{pi r}int_0^1frac{left(rxarcsin(rx)+sqrt{1-r^2x^2}right),mathrm{d}x}{sqrt{1-x^2}}
        end{equation}

        Plugging in $r=i$,
        begin{align}
        sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac{(-1)^k}{(2k-1)^2}
        &=frac{2}{pi}int_0^1frac{left(ixarcsin(ix)+sqrt{1+x^2}right),mathrm{d}x}{sqrt{1-x^2}}\
        &=frac{2}{pi}int_0^1frac{sqrt{1+x^2}-xsinh^{-1}(x)}{sqrt{1-x^2}},mathrm{d}x\
        &=frac{2}{pi}int_0^1left[ frac{sqrt{1+x^2}}{sqrt{1-x^2}}-frac{sqrt{1-x^2}}{sqrt{1+x^2}}right],mathrm{d}x\
        &=frac{4}{pi}int_0^1 frac{x^2}{sqrt{1-x^4}},mathrm{d}x\
        &=frac{1}{pi}Bleft( frac{3}{4},frac{1}{2} right)\
        &=frac{4sqrt{2pi}}{Gamma^2left( frac{1}{4} right)}
        end{align}

        (the integration of the $sinh^{-1}$ term was made by parts).



        For the second expression, we decompose
        begin{equation}
        frac{n^2}{left( 2n-1 right)^2}=frac{1}{4}+frac{1}{2}frac{1}{2n-1}+frac{1}{4}frac{1}{left( 2n-1 right)^2}
        end{equation}

        From the linked answer we have also
        begin{equation}
        sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac{r^{2k-1}}{2k-1}
        =frac1{pi r}int_0^1frac{-sqrt{1-r^2x},mathrm{d}x}{sqrt{x(1-x)}}
        end{equation}

        and thus, with $r=i$
        begin{align}
        sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac{(-1)^k}{2k-1}
        &=-frac1{pi }int_0^1frac{sqrt{1+x},mathrm{d}x}{sqrt{x(1-x)}}\
        &=-frac2{pi }int_0^1frac{sqrt{1+t^2}}{sqrt{1-t^2}},mathrm{d}t\
        &=-frac{2sqrt{2}}{pi}Eleft( frac{1}{sqrt{2}} right)\
        &=-frac{2sqrt{2}}{pi}left[ frac{Gamma^2left( frac{1}{4} right)}{8sqrt{pi}}+frac{pi^{3/2}}{Gamma^2left( frac{1}{4} right)}right]
        end{align}

        where the singular value $k_1$ for the elliptic integral is used. We may also express from the answer
        begin{equation}
        sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}r^{2k}
        =frac1piint_0^1frac{mathrm{d}x}{sqrt{1-r^2x}sqrt{x(1-x)}}
        end{equation}

        which, with $r=i$ again, gives
        begin{align}
        sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}(-1)^{k}
        &=frac1piint_0^1frac{mathrm{d}x}{sqrt{1+x}sqrt{x(1-x)}}\
        &=frac2piint_0^1frac{dt}{sqrt{1-t^4}}\
        &=frac{1}{2pi}Bleft(frac{1}{4}, frac{1}{2} right)\
        &=frac{sqrt{2pi}}{2Gamma^2left(frac{3}{4}right)}
        end{align}

        Then,
        begin{align}
        S&=sum_{n=0}^{infty}frac{(-1)^nn^2}{(2n-1)^2}left[frac{1}{4^n}{2n choose n}right]^2\
        &=frac{sqrt{2pi}}{8Gamma^2left(frac{3}{4}right)}
        -frac{sqrt{2}}{pi}left[ frac{Gamma^2left( frac{1}{4} right)}{8sqrt{pi}}+frac{pi^{3/2}}{Gamma^2left( frac{1}{4} right)}right]+frac{sqrt{2pi}}{Gamma^2left( frac{1}{4} right)}
        end{align}

        Using the reflection formula $Gamma(3/4)Gamma(1/4)=pisqrt{2}$, we obtain finally
        begin{equation}
        S=-frac{Gamma^2left( frac{1}{4} right)}{8sqrt2pi^{3/2}}
        end{equation}

        as expected.



        Edit (simpler derivation for the second expression)



        For the second expression, it is easier to leave the integrals unevaluated in the decomposition:
        begin{equation}
        S=int_0^1left[frac{1}{2pi}frac{1}{sqrt{1-x^4}}-frac{1}{pi}sqrt{frac{1+x^2}{1-x^2}}+frac{1}{pi}frac{x^2}{sqrt{1-x^4}} right],dx
        end{equation}

        or
        begin{align}
        S&=-frac{1}{2pi}int_0^1frac{dx}{sqrt{1-x^4}}\
        &=-frac{1}{8pi}int_0^1 left( 1-u right)^{-1/2}u^{-3/4},du\
        &=-frac{Bleft( frac{1}{4},frac{1}{2} right)}{8pi}
        end{align}

        and the result follows from the $Gamma$ reflection formula.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Jan 7 at 20:15

























        answered Jan 1 at 18:44









        Paul EntaPaul Enta

        5,36111434




        5,36111434






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058278%2fconcerning-this-sum-sum-n-0-infty-frac14n1-left-frac14n2n-ch%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            How do I know what Microsoft account the skydrive app is syncing to?

            When does type information flow backwards in C++?

            Grease: Live!