Concerning this sum $sum_{n=0}^{infty}frac{1}{4n+1}left[frac{1}{4^n}{2n choose...
$begingroup$
I was looking at this paper and saw this nice sum in section [12] of the paper,
$$sum_{n=0}^{infty}frac{1}{4n+1}left[frac{1}{4^n}{2n choose n}right]^2=frac{Gamma^4left(frac{1}{4}right)}{16pi^2}tag1$$
out of curiosity I conjectured the following two sums
$$begin{align*}
sum_{n=0}^{infty}frac{(-1)^n}{(2n-1)^2}left[frac{1}{4^n}{2n choose n}right]^2&=frac{4sqrt{2pi}}{Gamma^2left(frac{1}{4}right)}tag2\
sum_{n=0}^{infty}(-1)^nfrac{n^2}{(2n-1)^2}left[frac{1}{4^n}{2n choose n}right]^2&=-frac{Gamma^2left(frac{1}{4}right)}{8pisqrt{2pi}}tag3
end{align*}$$
I am unable to prove them.
How do we go about to prove these two sums?
sequences-and-series
$endgroup$
add a comment |
$begingroup$
I was looking at this paper and saw this nice sum in section [12] of the paper,
$$sum_{n=0}^{infty}frac{1}{4n+1}left[frac{1}{4^n}{2n choose n}right]^2=frac{Gamma^4left(frac{1}{4}right)}{16pi^2}tag1$$
out of curiosity I conjectured the following two sums
$$begin{align*}
sum_{n=0}^{infty}frac{(-1)^n}{(2n-1)^2}left[frac{1}{4^n}{2n choose n}right]^2&=frac{4sqrt{2pi}}{Gamma^2left(frac{1}{4}right)}tag2\
sum_{n=0}^{infty}(-1)^nfrac{n^2}{(2n-1)^2}left[frac{1}{4^n}{2n choose n}right]^2&=-frac{Gamma^2left(frac{1}{4}right)}{8pisqrt{2pi}}tag3
end{align*}$$
I am unable to prove them.
How do we go about to prove these two sums?
sequences-and-series
$endgroup$
2
$begingroup$
What made you conjecture them?
$endgroup$
– clathratus
Jan 1 at 8:35
$begingroup$
I suppose that,as in the linked paper, we would need to use hypergeometric functions first summing from $0$ to $p$.
$endgroup$
– Claude Leibovici
Jan 1 at 9:15
$begingroup$
+1 for link to the nice paper. May be Jack D'Aurizio can shed some light on your conjectured identities.
$endgroup$
– Paramanand Singh
Jan 1 at 15:41
$begingroup$
All the given series can be written in terms of the moments of $K(x)$ or $E(x)$, i.e. $int_{0}^{1}x^eta K(x),dx$ and $int_{0}^{1}x^eta E(x),dx$. Since the complete elliptic integrals have simple Fourier-Legendre expansions, these identities can be proved through harmonic analysis, too. That's the whole point of the paper in a nutshell ;)
$endgroup$
– Jack D'Aurizio
Jan 1 at 20:28
add a comment |
$begingroup$
I was looking at this paper and saw this nice sum in section [12] of the paper,
$$sum_{n=0}^{infty}frac{1}{4n+1}left[frac{1}{4^n}{2n choose n}right]^2=frac{Gamma^4left(frac{1}{4}right)}{16pi^2}tag1$$
out of curiosity I conjectured the following two sums
$$begin{align*}
sum_{n=0}^{infty}frac{(-1)^n}{(2n-1)^2}left[frac{1}{4^n}{2n choose n}right]^2&=frac{4sqrt{2pi}}{Gamma^2left(frac{1}{4}right)}tag2\
sum_{n=0}^{infty}(-1)^nfrac{n^2}{(2n-1)^2}left[frac{1}{4^n}{2n choose n}right]^2&=-frac{Gamma^2left(frac{1}{4}right)}{8pisqrt{2pi}}tag3
end{align*}$$
I am unable to prove them.
How do we go about to prove these two sums?
sequences-and-series
$endgroup$
I was looking at this paper and saw this nice sum in section [12] of the paper,
$$sum_{n=0}^{infty}frac{1}{4n+1}left[frac{1}{4^n}{2n choose n}right]^2=frac{Gamma^4left(frac{1}{4}right)}{16pi^2}tag1$$
out of curiosity I conjectured the following two sums
$$begin{align*}
sum_{n=0}^{infty}frac{(-1)^n}{(2n-1)^2}left[frac{1}{4^n}{2n choose n}right]^2&=frac{4sqrt{2pi}}{Gamma^2left(frac{1}{4}right)}tag2\
sum_{n=0}^{infty}(-1)^nfrac{n^2}{(2n-1)^2}left[frac{1}{4^n}{2n choose n}right]^2&=-frac{Gamma^2left(frac{1}{4}right)}{8pisqrt{2pi}}tag3
end{align*}$$
I am unable to prove them.
How do we go about to prove these two sums?
sequences-and-series
sequences-and-series
edited Jan 7 at 0:02
mrtaurho
6,08771641
6,08771641
asked Jan 1 at 8:17
user583851user583851
518110
518110
2
$begingroup$
What made you conjecture them?
$endgroup$
– clathratus
Jan 1 at 8:35
$begingroup$
I suppose that,as in the linked paper, we would need to use hypergeometric functions first summing from $0$ to $p$.
$endgroup$
– Claude Leibovici
Jan 1 at 9:15
$begingroup$
+1 for link to the nice paper. May be Jack D'Aurizio can shed some light on your conjectured identities.
$endgroup$
– Paramanand Singh
Jan 1 at 15:41
$begingroup$
All the given series can be written in terms of the moments of $K(x)$ or $E(x)$, i.e. $int_{0}^{1}x^eta K(x),dx$ and $int_{0}^{1}x^eta E(x),dx$. Since the complete elliptic integrals have simple Fourier-Legendre expansions, these identities can be proved through harmonic analysis, too. That's the whole point of the paper in a nutshell ;)
$endgroup$
– Jack D'Aurizio
Jan 1 at 20:28
add a comment |
2
$begingroup$
What made you conjecture them?
$endgroup$
– clathratus
Jan 1 at 8:35
$begingroup$
I suppose that,as in the linked paper, we would need to use hypergeometric functions first summing from $0$ to $p$.
$endgroup$
– Claude Leibovici
Jan 1 at 9:15
$begingroup$
+1 for link to the nice paper. May be Jack D'Aurizio can shed some light on your conjectured identities.
$endgroup$
– Paramanand Singh
Jan 1 at 15:41
$begingroup$
All the given series can be written in terms of the moments of $K(x)$ or $E(x)$, i.e. $int_{0}^{1}x^eta K(x),dx$ and $int_{0}^{1}x^eta E(x),dx$. Since the complete elliptic integrals have simple Fourier-Legendre expansions, these identities can be proved through harmonic analysis, too. That's the whole point of the paper in a nutshell ;)
$endgroup$
– Jack D'Aurizio
Jan 1 at 20:28
2
2
$begingroup$
What made you conjecture them?
$endgroup$
– clathratus
Jan 1 at 8:35
$begingroup$
What made you conjecture them?
$endgroup$
– clathratus
Jan 1 at 8:35
$begingroup$
I suppose that,as in the linked paper, we would need to use hypergeometric functions first summing from $0$ to $p$.
$endgroup$
– Claude Leibovici
Jan 1 at 9:15
$begingroup$
I suppose that,as in the linked paper, we would need to use hypergeometric functions first summing from $0$ to $p$.
$endgroup$
– Claude Leibovici
Jan 1 at 9:15
$begingroup$
+1 for link to the nice paper. May be Jack D'Aurizio can shed some light on your conjectured identities.
$endgroup$
– Paramanand Singh
Jan 1 at 15:41
$begingroup$
+1 for link to the nice paper. May be Jack D'Aurizio can shed some light on your conjectured identities.
$endgroup$
– Paramanand Singh
Jan 1 at 15:41
$begingroup$
All the given series can be written in terms of the moments of $K(x)$ or $E(x)$, i.e. $int_{0}^{1}x^eta K(x),dx$ and $int_{0}^{1}x^eta E(x),dx$. Since the complete elliptic integrals have simple Fourier-Legendre expansions, these identities can be proved through harmonic analysis, too. That's the whole point of the paper in a nutshell ;)
$endgroup$
– Jack D'Aurizio
Jan 1 at 20:28
$begingroup$
All the given series can be written in terms of the moments of $K(x)$ or $E(x)$, i.e. $int_{0}^{1}x^eta K(x),dx$ and $int_{0}^{1}x^eta E(x),dx$. Since the complete elliptic integrals have simple Fourier-Legendre expansions, these identities can be proved through harmonic analysis, too. That's the whole point of the paper in a nutshell ;)
$endgroup$
– Jack D'Aurizio
Jan 1 at 20:28
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
From the beautiful answer by @robjohn, we learn
begin{equation}
sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac{r^{2k-1}}{(2k-1)^2}
=frac2{pi r}int_0^1frac{left(rxarcsin(rx)+sqrt{1-r^2x^2}right),mathrm{d}x}{sqrt{1-x^2}}
end{equation}
Plugging in $r=i$,
begin{align}
sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac{(-1)^k}{(2k-1)^2}
&=frac{2}{pi}int_0^1frac{left(ixarcsin(ix)+sqrt{1+x^2}right),mathrm{d}x}{sqrt{1-x^2}}\
&=frac{2}{pi}int_0^1frac{sqrt{1+x^2}-xsinh^{-1}(x)}{sqrt{1-x^2}},mathrm{d}x\
&=frac{2}{pi}int_0^1left[ frac{sqrt{1+x^2}}{sqrt{1-x^2}}-frac{sqrt{1-x^2}}{sqrt{1+x^2}}right],mathrm{d}x\
&=frac{4}{pi}int_0^1 frac{x^2}{sqrt{1-x^4}},mathrm{d}x\
&=frac{1}{pi}Bleft( frac{3}{4},frac{1}{2} right)\
&=frac{4sqrt{2pi}}{Gamma^2left( frac{1}{4} right)}
end{align}
(the integration of the $sinh^{-1}$ term was made by parts).
For the second expression, we decompose
begin{equation}
frac{n^2}{left( 2n-1 right)^2}=frac{1}{4}+frac{1}{2}frac{1}{2n-1}+frac{1}{4}frac{1}{left( 2n-1 right)^2}
end{equation}
From the linked answer we have also
begin{equation}
sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac{r^{2k-1}}{2k-1}
=frac1{pi r}int_0^1frac{-sqrt{1-r^2x},mathrm{d}x}{sqrt{x(1-x)}}
end{equation}
and thus, with $r=i$
begin{align}
sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac{(-1)^k}{2k-1}
&=-frac1{pi }int_0^1frac{sqrt{1+x},mathrm{d}x}{sqrt{x(1-x)}}\
&=-frac2{pi }int_0^1frac{sqrt{1+t^2}}{sqrt{1-t^2}},mathrm{d}t\
&=-frac{2sqrt{2}}{pi}Eleft( frac{1}{sqrt{2}} right)\
&=-frac{2sqrt{2}}{pi}left[ frac{Gamma^2left( frac{1}{4} right)}{8sqrt{pi}}+frac{pi^{3/2}}{Gamma^2left( frac{1}{4} right)}right]
end{align}
where the singular value $k_1$ for the elliptic integral is used. We may also express from the answer
begin{equation}
sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}r^{2k}
=frac1piint_0^1frac{mathrm{d}x}{sqrt{1-r^2x}sqrt{x(1-x)}}
end{equation}
which, with $r=i$ again, gives
begin{align}
sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}(-1)^{k}
&=frac1piint_0^1frac{mathrm{d}x}{sqrt{1+x}sqrt{x(1-x)}}\
&=frac2piint_0^1frac{dt}{sqrt{1-t^4}}\
&=frac{1}{2pi}Bleft(frac{1}{4}, frac{1}{2} right)\
&=frac{sqrt{2pi}}{2Gamma^2left(frac{3}{4}right)}
end{align}
Then,
begin{align}
S&=sum_{n=0}^{infty}frac{(-1)^nn^2}{(2n-1)^2}left[frac{1}{4^n}{2n choose n}right]^2\
&=frac{sqrt{2pi}}{8Gamma^2left(frac{3}{4}right)}
-frac{sqrt{2}}{pi}left[ frac{Gamma^2left( frac{1}{4} right)}{8sqrt{pi}}+frac{pi^{3/2}}{Gamma^2left( frac{1}{4} right)}right]+frac{sqrt{2pi}}{Gamma^2left( frac{1}{4} right)}
end{align}
Using the reflection formula $Gamma(3/4)Gamma(1/4)=pisqrt{2}$, we obtain finally
begin{equation}
S=-frac{Gamma^2left( frac{1}{4} right)}{8sqrt2pi^{3/2}}
end{equation}
as expected.
Edit (simpler derivation for the second expression)
For the second expression, it is easier to leave the integrals unevaluated in the decomposition:
begin{equation}
S=int_0^1left[frac{1}{2pi}frac{1}{sqrt{1-x^4}}-frac{1}{pi}sqrt{frac{1+x^2}{1-x^2}}+frac{1}{pi}frac{x^2}{sqrt{1-x^4}} right],dx
end{equation}
or
begin{align}
S&=-frac{1}{2pi}int_0^1frac{dx}{sqrt{1-x^4}}\
&=-frac{1}{8pi}int_0^1 left( 1-u right)^{-1/2}u^{-3/4},du\
&=-frac{Bleft( frac{1}{4},frac{1}{2} right)}{8pi}
end{align}
and the result follows from the $Gamma$ reflection formula.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058278%2fconcerning-this-sum-sum-n-0-infty-frac14n1-left-frac14n2n-ch%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
From the beautiful answer by @robjohn, we learn
begin{equation}
sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac{r^{2k-1}}{(2k-1)^2}
=frac2{pi r}int_0^1frac{left(rxarcsin(rx)+sqrt{1-r^2x^2}right),mathrm{d}x}{sqrt{1-x^2}}
end{equation}
Plugging in $r=i$,
begin{align}
sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac{(-1)^k}{(2k-1)^2}
&=frac{2}{pi}int_0^1frac{left(ixarcsin(ix)+sqrt{1+x^2}right),mathrm{d}x}{sqrt{1-x^2}}\
&=frac{2}{pi}int_0^1frac{sqrt{1+x^2}-xsinh^{-1}(x)}{sqrt{1-x^2}},mathrm{d}x\
&=frac{2}{pi}int_0^1left[ frac{sqrt{1+x^2}}{sqrt{1-x^2}}-frac{sqrt{1-x^2}}{sqrt{1+x^2}}right],mathrm{d}x\
&=frac{4}{pi}int_0^1 frac{x^2}{sqrt{1-x^4}},mathrm{d}x\
&=frac{1}{pi}Bleft( frac{3}{4},frac{1}{2} right)\
&=frac{4sqrt{2pi}}{Gamma^2left( frac{1}{4} right)}
end{align}
(the integration of the $sinh^{-1}$ term was made by parts).
For the second expression, we decompose
begin{equation}
frac{n^2}{left( 2n-1 right)^2}=frac{1}{4}+frac{1}{2}frac{1}{2n-1}+frac{1}{4}frac{1}{left( 2n-1 right)^2}
end{equation}
From the linked answer we have also
begin{equation}
sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac{r^{2k-1}}{2k-1}
=frac1{pi r}int_0^1frac{-sqrt{1-r^2x},mathrm{d}x}{sqrt{x(1-x)}}
end{equation}
and thus, with $r=i$
begin{align}
sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac{(-1)^k}{2k-1}
&=-frac1{pi }int_0^1frac{sqrt{1+x},mathrm{d}x}{sqrt{x(1-x)}}\
&=-frac2{pi }int_0^1frac{sqrt{1+t^2}}{sqrt{1-t^2}},mathrm{d}t\
&=-frac{2sqrt{2}}{pi}Eleft( frac{1}{sqrt{2}} right)\
&=-frac{2sqrt{2}}{pi}left[ frac{Gamma^2left( frac{1}{4} right)}{8sqrt{pi}}+frac{pi^{3/2}}{Gamma^2left( frac{1}{4} right)}right]
end{align}
where the singular value $k_1$ for the elliptic integral is used. We may also express from the answer
begin{equation}
sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}r^{2k}
=frac1piint_0^1frac{mathrm{d}x}{sqrt{1-r^2x}sqrt{x(1-x)}}
end{equation}
which, with $r=i$ again, gives
begin{align}
sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}(-1)^{k}
&=frac1piint_0^1frac{mathrm{d}x}{sqrt{1+x}sqrt{x(1-x)}}\
&=frac2piint_0^1frac{dt}{sqrt{1-t^4}}\
&=frac{1}{2pi}Bleft(frac{1}{4}, frac{1}{2} right)\
&=frac{sqrt{2pi}}{2Gamma^2left(frac{3}{4}right)}
end{align}
Then,
begin{align}
S&=sum_{n=0}^{infty}frac{(-1)^nn^2}{(2n-1)^2}left[frac{1}{4^n}{2n choose n}right]^2\
&=frac{sqrt{2pi}}{8Gamma^2left(frac{3}{4}right)}
-frac{sqrt{2}}{pi}left[ frac{Gamma^2left( frac{1}{4} right)}{8sqrt{pi}}+frac{pi^{3/2}}{Gamma^2left( frac{1}{4} right)}right]+frac{sqrt{2pi}}{Gamma^2left( frac{1}{4} right)}
end{align}
Using the reflection formula $Gamma(3/4)Gamma(1/4)=pisqrt{2}$, we obtain finally
begin{equation}
S=-frac{Gamma^2left( frac{1}{4} right)}{8sqrt2pi^{3/2}}
end{equation}
as expected.
Edit (simpler derivation for the second expression)
For the second expression, it is easier to leave the integrals unevaluated in the decomposition:
begin{equation}
S=int_0^1left[frac{1}{2pi}frac{1}{sqrt{1-x^4}}-frac{1}{pi}sqrt{frac{1+x^2}{1-x^2}}+frac{1}{pi}frac{x^2}{sqrt{1-x^4}} right],dx
end{equation}
or
begin{align}
S&=-frac{1}{2pi}int_0^1frac{dx}{sqrt{1-x^4}}\
&=-frac{1}{8pi}int_0^1 left( 1-u right)^{-1/2}u^{-3/4},du\
&=-frac{Bleft( frac{1}{4},frac{1}{2} right)}{8pi}
end{align}
and the result follows from the $Gamma$ reflection formula.
$endgroup$
add a comment |
$begingroup$
From the beautiful answer by @robjohn, we learn
begin{equation}
sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac{r^{2k-1}}{(2k-1)^2}
=frac2{pi r}int_0^1frac{left(rxarcsin(rx)+sqrt{1-r^2x^2}right),mathrm{d}x}{sqrt{1-x^2}}
end{equation}
Plugging in $r=i$,
begin{align}
sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac{(-1)^k}{(2k-1)^2}
&=frac{2}{pi}int_0^1frac{left(ixarcsin(ix)+sqrt{1+x^2}right),mathrm{d}x}{sqrt{1-x^2}}\
&=frac{2}{pi}int_0^1frac{sqrt{1+x^2}-xsinh^{-1}(x)}{sqrt{1-x^2}},mathrm{d}x\
&=frac{2}{pi}int_0^1left[ frac{sqrt{1+x^2}}{sqrt{1-x^2}}-frac{sqrt{1-x^2}}{sqrt{1+x^2}}right],mathrm{d}x\
&=frac{4}{pi}int_0^1 frac{x^2}{sqrt{1-x^4}},mathrm{d}x\
&=frac{1}{pi}Bleft( frac{3}{4},frac{1}{2} right)\
&=frac{4sqrt{2pi}}{Gamma^2left( frac{1}{4} right)}
end{align}
(the integration of the $sinh^{-1}$ term was made by parts).
For the second expression, we decompose
begin{equation}
frac{n^2}{left( 2n-1 right)^2}=frac{1}{4}+frac{1}{2}frac{1}{2n-1}+frac{1}{4}frac{1}{left( 2n-1 right)^2}
end{equation}
From the linked answer we have also
begin{equation}
sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac{r^{2k-1}}{2k-1}
=frac1{pi r}int_0^1frac{-sqrt{1-r^2x},mathrm{d}x}{sqrt{x(1-x)}}
end{equation}
and thus, with $r=i$
begin{align}
sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac{(-1)^k}{2k-1}
&=-frac1{pi }int_0^1frac{sqrt{1+x},mathrm{d}x}{sqrt{x(1-x)}}\
&=-frac2{pi }int_0^1frac{sqrt{1+t^2}}{sqrt{1-t^2}},mathrm{d}t\
&=-frac{2sqrt{2}}{pi}Eleft( frac{1}{sqrt{2}} right)\
&=-frac{2sqrt{2}}{pi}left[ frac{Gamma^2left( frac{1}{4} right)}{8sqrt{pi}}+frac{pi^{3/2}}{Gamma^2left( frac{1}{4} right)}right]
end{align}
where the singular value $k_1$ for the elliptic integral is used. We may also express from the answer
begin{equation}
sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}r^{2k}
=frac1piint_0^1frac{mathrm{d}x}{sqrt{1-r^2x}sqrt{x(1-x)}}
end{equation}
which, with $r=i$ again, gives
begin{align}
sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}(-1)^{k}
&=frac1piint_0^1frac{mathrm{d}x}{sqrt{1+x}sqrt{x(1-x)}}\
&=frac2piint_0^1frac{dt}{sqrt{1-t^4}}\
&=frac{1}{2pi}Bleft(frac{1}{4}, frac{1}{2} right)\
&=frac{sqrt{2pi}}{2Gamma^2left(frac{3}{4}right)}
end{align}
Then,
begin{align}
S&=sum_{n=0}^{infty}frac{(-1)^nn^2}{(2n-1)^2}left[frac{1}{4^n}{2n choose n}right]^2\
&=frac{sqrt{2pi}}{8Gamma^2left(frac{3}{4}right)}
-frac{sqrt{2}}{pi}left[ frac{Gamma^2left( frac{1}{4} right)}{8sqrt{pi}}+frac{pi^{3/2}}{Gamma^2left( frac{1}{4} right)}right]+frac{sqrt{2pi}}{Gamma^2left( frac{1}{4} right)}
end{align}
Using the reflection formula $Gamma(3/4)Gamma(1/4)=pisqrt{2}$, we obtain finally
begin{equation}
S=-frac{Gamma^2left( frac{1}{4} right)}{8sqrt2pi^{3/2}}
end{equation}
as expected.
Edit (simpler derivation for the second expression)
For the second expression, it is easier to leave the integrals unevaluated in the decomposition:
begin{equation}
S=int_0^1left[frac{1}{2pi}frac{1}{sqrt{1-x^4}}-frac{1}{pi}sqrt{frac{1+x^2}{1-x^2}}+frac{1}{pi}frac{x^2}{sqrt{1-x^4}} right],dx
end{equation}
or
begin{align}
S&=-frac{1}{2pi}int_0^1frac{dx}{sqrt{1-x^4}}\
&=-frac{1}{8pi}int_0^1 left( 1-u right)^{-1/2}u^{-3/4},du\
&=-frac{Bleft( frac{1}{4},frac{1}{2} right)}{8pi}
end{align}
and the result follows from the $Gamma$ reflection formula.
$endgroup$
add a comment |
$begingroup$
From the beautiful answer by @robjohn, we learn
begin{equation}
sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac{r^{2k-1}}{(2k-1)^2}
=frac2{pi r}int_0^1frac{left(rxarcsin(rx)+sqrt{1-r^2x^2}right),mathrm{d}x}{sqrt{1-x^2}}
end{equation}
Plugging in $r=i$,
begin{align}
sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac{(-1)^k}{(2k-1)^2}
&=frac{2}{pi}int_0^1frac{left(ixarcsin(ix)+sqrt{1+x^2}right),mathrm{d}x}{sqrt{1-x^2}}\
&=frac{2}{pi}int_0^1frac{sqrt{1+x^2}-xsinh^{-1}(x)}{sqrt{1-x^2}},mathrm{d}x\
&=frac{2}{pi}int_0^1left[ frac{sqrt{1+x^2}}{sqrt{1-x^2}}-frac{sqrt{1-x^2}}{sqrt{1+x^2}}right],mathrm{d}x\
&=frac{4}{pi}int_0^1 frac{x^2}{sqrt{1-x^4}},mathrm{d}x\
&=frac{1}{pi}Bleft( frac{3}{4},frac{1}{2} right)\
&=frac{4sqrt{2pi}}{Gamma^2left( frac{1}{4} right)}
end{align}
(the integration of the $sinh^{-1}$ term was made by parts).
For the second expression, we decompose
begin{equation}
frac{n^2}{left( 2n-1 right)^2}=frac{1}{4}+frac{1}{2}frac{1}{2n-1}+frac{1}{4}frac{1}{left( 2n-1 right)^2}
end{equation}
From the linked answer we have also
begin{equation}
sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac{r^{2k-1}}{2k-1}
=frac1{pi r}int_0^1frac{-sqrt{1-r^2x},mathrm{d}x}{sqrt{x(1-x)}}
end{equation}
and thus, with $r=i$
begin{align}
sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac{(-1)^k}{2k-1}
&=-frac1{pi }int_0^1frac{sqrt{1+x},mathrm{d}x}{sqrt{x(1-x)}}\
&=-frac2{pi }int_0^1frac{sqrt{1+t^2}}{sqrt{1-t^2}},mathrm{d}t\
&=-frac{2sqrt{2}}{pi}Eleft( frac{1}{sqrt{2}} right)\
&=-frac{2sqrt{2}}{pi}left[ frac{Gamma^2left( frac{1}{4} right)}{8sqrt{pi}}+frac{pi^{3/2}}{Gamma^2left( frac{1}{4} right)}right]
end{align}
where the singular value $k_1$ for the elliptic integral is used. We may also express from the answer
begin{equation}
sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}r^{2k}
=frac1piint_0^1frac{mathrm{d}x}{sqrt{1-r^2x}sqrt{x(1-x)}}
end{equation}
which, with $r=i$ again, gives
begin{align}
sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}(-1)^{k}
&=frac1piint_0^1frac{mathrm{d}x}{sqrt{1+x}sqrt{x(1-x)}}\
&=frac2piint_0^1frac{dt}{sqrt{1-t^4}}\
&=frac{1}{2pi}Bleft(frac{1}{4}, frac{1}{2} right)\
&=frac{sqrt{2pi}}{2Gamma^2left(frac{3}{4}right)}
end{align}
Then,
begin{align}
S&=sum_{n=0}^{infty}frac{(-1)^nn^2}{(2n-1)^2}left[frac{1}{4^n}{2n choose n}right]^2\
&=frac{sqrt{2pi}}{8Gamma^2left(frac{3}{4}right)}
-frac{sqrt{2}}{pi}left[ frac{Gamma^2left( frac{1}{4} right)}{8sqrt{pi}}+frac{pi^{3/2}}{Gamma^2left( frac{1}{4} right)}right]+frac{sqrt{2pi}}{Gamma^2left( frac{1}{4} right)}
end{align}
Using the reflection formula $Gamma(3/4)Gamma(1/4)=pisqrt{2}$, we obtain finally
begin{equation}
S=-frac{Gamma^2left( frac{1}{4} right)}{8sqrt2pi^{3/2}}
end{equation}
as expected.
Edit (simpler derivation for the second expression)
For the second expression, it is easier to leave the integrals unevaluated in the decomposition:
begin{equation}
S=int_0^1left[frac{1}{2pi}frac{1}{sqrt{1-x^4}}-frac{1}{pi}sqrt{frac{1+x^2}{1-x^2}}+frac{1}{pi}frac{x^2}{sqrt{1-x^4}} right],dx
end{equation}
or
begin{align}
S&=-frac{1}{2pi}int_0^1frac{dx}{sqrt{1-x^4}}\
&=-frac{1}{8pi}int_0^1 left( 1-u right)^{-1/2}u^{-3/4},du\
&=-frac{Bleft( frac{1}{4},frac{1}{2} right)}{8pi}
end{align}
and the result follows from the $Gamma$ reflection formula.
$endgroup$
From the beautiful answer by @robjohn, we learn
begin{equation}
sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac{r^{2k-1}}{(2k-1)^2}
=frac2{pi r}int_0^1frac{left(rxarcsin(rx)+sqrt{1-r^2x^2}right),mathrm{d}x}{sqrt{1-x^2}}
end{equation}
Plugging in $r=i$,
begin{align}
sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac{(-1)^k}{(2k-1)^2}
&=frac{2}{pi}int_0^1frac{left(ixarcsin(ix)+sqrt{1+x^2}right),mathrm{d}x}{sqrt{1-x^2}}\
&=frac{2}{pi}int_0^1frac{sqrt{1+x^2}-xsinh^{-1}(x)}{sqrt{1-x^2}},mathrm{d}x\
&=frac{2}{pi}int_0^1left[ frac{sqrt{1+x^2}}{sqrt{1-x^2}}-frac{sqrt{1-x^2}}{sqrt{1+x^2}}right],mathrm{d}x\
&=frac{4}{pi}int_0^1 frac{x^2}{sqrt{1-x^4}},mathrm{d}x\
&=frac{1}{pi}Bleft( frac{3}{4},frac{1}{2} right)\
&=frac{4sqrt{2pi}}{Gamma^2left( frac{1}{4} right)}
end{align}
(the integration of the $sinh^{-1}$ term was made by parts).
For the second expression, we decompose
begin{equation}
frac{n^2}{left( 2n-1 right)^2}=frac{1}{4}+frac{1}{2}frac{1}{2n-1}+frac{1}{4}frac{1}{left( 2n-1 right)^2}
end{equation}
From the linked answer we have also
begin{equation}
sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac{r^{2k-1}}{2k-1}
=frac1{pi r}int_0^1frac{-sqrt{1-r^2x},mathrm{d}x}{sqrt{x(1-x)}}
end{equation}
and thus, with $r=i$
begin{align}
sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac{(-1)^k}{2k-1}
&=-frac1{pi }int_0^1frac{sqrt{1+x},mathrm{d}x}{sqrt{x(1-x)}}\
&=-frac2{pi }int_0^1frac{sqrt{1+t^2}}{sqrt{1-t^2}},mathrm{d}t\
&=-frac{2sqrt{2}}{pi}Eleft( frac{1}{sqrt{2}} right)\
&=-frac{2sqrt{2}}{pi}left[ frac{Gamma^2left( frac{1}{4} right)}{8sqrt{pi}}+frac{pi^{3/2}}{Gamma^2left( frac{1}{4} right)}right]
end{align}
where the singular value $k_1$ for the elliptic integral is used. We may also express from the answer
begin{equation}
sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}r^{2k}
=frac1piint_0^1frac{mathrm{d}x}{sqrt{1-r^2x}sqrt{x(1-x)}}
end{equation}
which, with $r=i$ again, gives
begin{align}
sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}(-1)^{k}
&=frac1piint_0^1frac{mathrm{d}x}{sqrt{1+x}sqrt{x(1-x)}}\
&=frac2piint_0^1frac{dt}{sqrt{1-t^4}}\
&=frac{1}{2pi}Bleft(frac{1}{4}, frac{1}{2} right)\
&=frac{sqrt{2pi}}{2Gamma^2left(frac{3}{4}right)}
end{align}
Then,
begin{align}
S&=sum_{n=0}^{infty}frac{(-1)^nn^2}{(2n-1)^2}left[frac{1}{4^n}{2n choose n}right]^2\
&=frac{sqrt{2pi}}{8Gamma^2left(frac{3}{4}right)}
-frac{sqrt{2}}{pi}left[ frac{Gamma^2left( frac{1}{4} right)}{8sqrt{pi}}+frac{pi^{3/2}}{Gamma^2left( frac{1}{4} right)}right]+frac{sqrt{2pi}}{Gamma^2left( frac{1}{4} right)}
end{align}
Using the reflection formula $Gamma(3/4)Gamma(1/4)=pisqrt{2}$, we obtain finally
begin{equation}
S=-frac{Gamma^2left( frac{1}{4} right)}{8sqrt2pi^{3/2}}
end{equation}
as expected.
Edit (simpler derivation for the second expression)
For the second expression, it is easier to leave the integrals unevaluated in the decomposition:
begin{equation}
S=int_0^1left[frac{1}{2pi}frac{1}{sqrt{1-x^4}}-frac{1}{pi}sqrt{frac{1+x^2}{1-x^2}}+frac{1}{pi}frac{x^2}{sqrt{1-x^4}} right],dx
end{equation}
or
begin{align}
S&=-frac{1}{2pi}int_0^1frac{dx}{sqrt{1-x^4}}\
&=-frac{1}{8pi}int_0^1 left( 1-u right)^{-1/2}u^{-3/4},du\
&=-frac{Bleft( frac{1}{4},frac{1}{2} right)}{8pi}
end{align}
and the result follows from the $Gamma$ reflection formula.
edited Jan 7 at 20:15
answered Jan 1 at 18:44
Paul EntaPaul Enta
5,36111434
5,36111434
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058278%2fconcerning-this-sum-sum-n-0-infty-frac14n1-left-frac14n2n-ch%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
What made you conjecture them?
$endgroup$
– clathratus
Jan 1 at 8:35
$begingroup$
I suppose that,as in the linked paper, we would need to use hypergeometric functions first summing from $0$ to $p$.
$endgroup$
– Claude Leibovici
Jan 1 at 9:15
$begingroup$
+1 for link to the nice paper. May be Jack D'Aurizio can shed some light on your conjectured identities.
$endgroup$
– Paramanand Singh
Jan 1 at 15:41
$begingroup$
All the given series can be written in terms of the moments of $K(x)$ or $E(x)$, i.e. $int_{0}^{1}x^eta K(x),dx$ and $int_{0}^{1}x^eta E(x),dx$. Since the complete elliptic integrals have simple Fourier-Legendre expansions, these identities can be proved through harmonic analysis, too. That's the whole point of the paper in a nutshell ;)
$endgroup$
– Jack D'Aurizio
Jan 1 at 20:28