How to analytically compute KL divergence of two Gaussian distributions?
$begingroup$
Consider two multi-variate Gaussian distributions, $p(x)=mathcal N(x;mu_p, sigma_p^2)$ and $q(x)=mathcal N(x; mu_q, sigma_q^2)$. It seems the KL-divergence of these two Gaussian distributions $D_{KL}(p(x)Vert q(x))$ can be calculated analytically(according to the paper "Auto-Encoding Variational Bayes"), but I don't know how. "Auto-Encoding Variational Bayes" gives the result of a more special case where $q(x)=mathcal N(x;mathbf 0, mathbf I)$, but no detailed procedure is provided.
Ps. I know how univariate Gaussian is derived.
$$
begin{align}
D_{KL}(p(x)Vert q(x))&=int p(x)log {p(x)over q(x)}dx\
&=int p(x)log {{1over sqrt{2pi sigma_p^2}}expleft(-{(x-mu_p)^2over 2sigma_p^2}right)over{1over sqrt{2pi sigma_q^2}}expleft(-{(x-mu_q)^2over 2sigma_q^2}right)}dx\
&={1over 2}intlog{sigma_q^2over sigma_p^2}p(x)dx - {1over 2sigma_p^2}int(x-mu_p)^2p(x)dx+{1over2sigma_q^2}int(x-mu_q)^2p(x)dx\
&={1over 2}left(log{sigma_q^2over sigma_p^2} - 1 + {1oversigma_q^2}int(x-mu_p + mu_p - mu_q)^2p(x)dxright)\
&={1over 2}left(log{sigma_q^2over sigma_p^2} - 1 + {1oversigma_q^2}intleft((x-mu_p)^2 + 2(x-mu_p)(mu_p-mu_q) + (mu_p - mu_q)^2right)p(x)dxright)\
&={1over 2}left(log{sigma_q^2over sigma_p^2} - 1 + {1oversigma_q^2}left(sigma_p^2 + (mu_p - mu_q)^2right)right)\
end{align}
$$
but I'm not very familiar with the multi-variate case, it seems the result involves the sum over every variate:
$$
D_{KL}(p(x)Vert q(x))={1over 2}sum_{jin J}left(log{sigma_{q, j}^2over sigma_{p,j}^2} - 1 + {1oversigma_{q,j}^2}left(sigma_{p,j}^2 + (mu_{p,j} - mu_{q,j})^2right)right)\
$$
where $J$ is the dimension of $x$. But why do we sum over all the variates?
Please help me sort this out. Thanks in advance!
calculus probability integration entropy
$endgroup$
add a comment |
$begingroup$
Consider two multi-variate Gaussian distributions, $p(x)=mathcal N(x;mu_p, sigma_p^2)$ and $q(x)=mathcal N(x; mu_q, sigma_q^2)$. It seems the KL-divergence of these two Gaussian distributions $D_{KL}(p(x)Vert q(x))$ can be calculated analytically(according to the paper "Auto-Encoding Variational Bayes"), but I don't know how. "Auto-Encoding Variational Bayes" gives the result of a more special case where $q(x)=mathcal N(x;mathbf 0, mathbf I)$, but no detailed procedure is provided.
Ps. I know how univariate Gaussian is derived.
$$
begin{align}
D_{KL}(p(x)Vert q(x))&=int p(x)log {p(x)over q(x)}dx\
&=int p(x)log {{1over sqrt{2pi sigma_p^2}}expleft(-{(x-mu_p)^2over 2sigma_p^2}right)over{1over sqrt{2pi sigma_q^2}}expleft(-{(x-mu_q)^2over 2sigma_q^2}right)}dx\
&={1over 2}intlog{sigma_q^2over sigma_p^2}p(x)dx - {1over 2sigma_p^2}int(x-mu_p)^2p(x)dx+{1over2sigma_q^2}int(x-mu_q)^2p(x)dx\
&={1over 2}left(log{sigma_q^2over sigma_p^2} - 1 + {1oversigma_q^2}int(x-mu_p + mu_p - mu_q)^2p(x)dxright)\
&={1over 2}left(log{sigma_q^2over sigma_p^2} - 1 + {1oversigma_q^2}intleft((x-mu_p)^2 + 2(x-mu_p)(mu_p-mu_q) + (mu_p - mu_q)^2right)p(x)dxright)\
&={1over 2}left(log{sigma_q^2over sigma_p^2} - 1 + {1oversigma_q^2}left(sigma_p^2 + (mu_p - mu_q)^2right)right)\
end{align}
$$
but I'm not very familiar with the multi-variate case, it seems the result involves the sum over every variate:
$$
D_{KL}(p(x)Vert q(x))={1over 2}sum_{jin J}left(log{sigma_{q, j}^2over sigma_{p,j}^2} - 1 + {1oversigma_{q,j}^2}left(sigma_{p,j}^2 + (mu_{p,j} - mu_{q,j})^2right)right)\
$$
where $J$ is the dimension of $x$. But why do we sum over all the variates?
Please help me sort this out. Thanks in advance!
calculus probability integration entropy
$endgroup$
1
$begingroup$
stats.stackexchange.com/questions/60680/…
$endgroup$
– Stelios
Aug 21 '18 at 21:36
add a comment |
$begingroup$
Consider two multi-variate Gaussian distributions, $p(x)=mathcal N(x;mu_p, sigma_p^2)$ and $q(x)=mathcal N(x; mu_q, sigma_q^2)$. It seems the KL-divergence of these two Gaussian distributions $D_{KL}(p(x)Vert q(x))$ can be calculated analytically(according to the paper "Auto-Encoding Variational Bayes"), but I don't know how. "Auto-Encoding Variational Bayes" gives the result of a more special case where $q(x)=mathcal N(x;mathbf 0, mathbf I)$, but no detailed procedure is provided.
Ps. I know how univariate Gaussian is derived.
$$
begin{align}
D_{KL}(p(x)Vert q(x))&=int p(x)log {p(x)over q(x)}dx\
&=int p(x)log {{1over sqrt{2pi sigma_p^2}}expleft(-{(x-mu_p)^2over 2sigma_p^2}right)over{1over sqrt{2pi sigma_q^2}}expleft(-{(x-mu_q)^2over 2sigma_q^2}right)}dx\
&={1over 2}intlog{sigma_q^2over sigma_p^2}p(x)dx - {1over 2sigma_p^2}int(x-mu_p)^2p(x)dx+{1over2sigma_q^2}int(x-mu_q)^2p(x)dx\
&={1over 2}left(log{sigma_q^2over sigma_p^2} - 1 + {1oversigma_q^2}int(x-mu_p + mu_p - mu_q)^2p(x)dxright)\
&={1over 2}left(log{sigma_q^2over sigma_p^2} - 1 + {1oversigma_q^2}intleft((x-mu_p)^2 + 2(x-mu_p)(mu_p-mu_q) + (mu_p - mu_q)^2right)p(x)dxright)\
&={1over 2}left(log{sigma_q^2over sigma_p^2} - 1 + {1oversigma_q^2}left(sigma_p^2 + (mu_p - mu_q)^2right)right)\
end{align}
$$
but I'm not very familiar with the multi-variate case, it seems the result involves the sum over every variate:
$$
D_{KL}(p(x)Vert q(x))={1over 2}sum_{jin J}left(log{sigma_{q, j}^2over sigma_{p,j}^2} - 1 + {1oversigma_{q,j}^2}left(sigma_{p,j}^2 + (mu_{p,j} - mu_{q,j})^2right)right)\
$$
where $J$ is the dimension of $x$. But why do we sum over all the variates?
Please help me sort this out. Thanks in advance!
calculus probability integration entropy
$endgroup$
Consider two multi-variate Gaussian distributions, $p(x)=mathcal N(x;mu_p, sigma_p^2)$ and $q(x)=mathcal N(x; mu_q, sigma_q^2)$. It seems the KL-divergence of these two Gaussian distributions $D_{KL}(p(x)Vert q(x))$ can be calculated analytically(according to the paper "Auto-Encoding Variational Bayes"), but I don't know how. "Auto-Encoding Variational Bayes" gives the result of a more special case where $q(x)=mathcal N(x;mathbf 0, mathbf I)$, but no detailed procedure is provided.
Ps. I know how univariate Gaussian is derived.
$$
begin{align}
D_{KL}(p(x)Vert q(x))&=int p(x)log {p(x)over q(x)}dx\
&=int p(x)log {{1over sqrt{2pi sigma_p^2}}expleft(-{(x-mu_p)^2over 2sigma_p^2}right)over{1over sqrt{2pi sigma_q^2}}expleft(-{(x-mu_q)^2over 2sigma_q^2}right)}dx\
&={1over 2}intlog{sigma_q^2over sigma_p^2}p(x)dx - {1over 2sigma_p^2}int(x-mu_p)^2p(x)dx+{1over2sigma_q^2}int(x-mu_q)^2p(x)dx\
&={1over 2}left(log{sigma_q^2over sigma_p^2} - 1 + {1oversigma_q^2}int(x-mu_p + mu_p - mu_q)^2p(x)dxright)\
&={1over 2}left(log{sigma_q^2over sigma_p^2} - 1 + {1oversigma_q^2}intleft((x-mu_p)^2 + 2(x-mu_p)(mu_p-mu_q) + (mu_p - mu_q)^2right)p(x)dxright)\
&={1over 2}left(log{sigma_q^2over sigma_p^2} - 1 + {1oversigma_q^2}left(sigma_p^2 + (mu_p - mu_q)^2right)right)\
end{align}
$$
but I'm not very familiar with the multi-variate case, it seems the result involves the sum over every variate:
$$
D_{KL}(p(x)Vert q(x))={1over 2}sum_{jin J}left(log{sigma_{q, j}^2over sigma_{p,j}^2} - 1 + {1oversigma_{q,j}^2}left(sigma_{p,j}^2 + (mu_{p,j} - mu_{q,j})^2right)right)\
$$
where $J$ is the dimension of $x$. But why do we sum over all the variates?
Please help me sort this out. Thanks in advance!
calculus probability integration entropy
calculus probability integration entropy
edited Aug 21 '18 at 21:54
Sherwin Chen
asked Aug 20 '18 at 3:37
Sherwin ChenSherwin Chen
1657
1657
1
$begingroup$
stats.stackexchange.com/questions/60680/…
$endgroup$
– Stelios
Aug 21 '18 at 21:36
add a comment |
1
$begingroup$
stats.stackexchange.com/questions/60680/…
$endgroup$
– Stelios
Aug 21 '18 at 21:36
1
1
$begingroup$
stats.stackexchange.com/questions/60680/…
$endgroup$
– Stelios
Aug 21 '18 at 21:36
$begingroup$
stats.stackexchange.com/questions/60680/…
$endgroup$
– Stelios
Aug 21 '18 at 21:36
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
According to http://101.110.118.57/stanford.edu/~jduchi/projects/general_notes.pdf, the KL divergence for two multivariate Gaussians in $mathbb R^n$ is computed as follows
$$
begin{align}
D_{KL}(P_1Vert P_2) &= {1over 2}E_{P_1}left[-logdetSigma_1-(x-mu_1)Sigma_1^{-1}(x-mu_1)^{T}+logdetSigma_2+(x-mu_2)Sigma_2^{-1}(x-mu_2)^{T}right]\
&={1over 2}left(log{detSigma_2over detSigma_1}+E_{P_1}left[-trbig((x-mu_1)Sigma_1^{-1}(x-mu_1)^{T})big)+trbig((x-mu_2)Sigma_2^{-1}(x-mu_2)^{T}big)right]right)\
&={1over 2}left(log{detSigma_2over detSigma_1}+E_{P_1}left[-trbig(Sigma_1^{-1}(x-mu_1)^{T}(x-mu_1))big)+trbig(Sigma_2^{-1}(x-mu_2)^{T}(x-mu_2)big)right]right)\
&={1over 2}left(log{detSigma_2over detSigma_1}-n+E_{P_1}left[trBig(Sigma_2^{-1}big(xx^T-2xmu_2^{T}+mu_2mu_2^Tbig)Big)right]right)\
&={1over 2}left(log{detSigma_2over detSigma_1}-n+E_{P_1}left[trBig(Sigma_2^{-1}big(Sigma_1+2xmu_1^T-mu_1mu_1^T-2xmu_2^{T}+mu_2mu_2^Tbig)Big)right]right)\
&={1over 2}left(log{detSigma_2over detSigma_1}-n+tr(Sigma_2^{-1}Sigma_1)+trBig(Sigma_2^{-1}E_{P_1}left[2xmu_1^T-mu_1mu_1^T-2xmu_2^{T}+mu_2mu_2^Tright]Big)right)\
&={1over 2}left(log{detSigma_2over detSigma_1}-n+tr(Sigma_2^{-1}Sigma_1)+trBig(mu_1^TSigma_2^{-1}mu_1-2mu_1^TSigma_2^{-1}mu_2+mu_2^TSigma_2^{-1}mu_2Big)right)\
&={1over 2}left(log{detSigma_2over detSigma_1}-n+tr(Sigma_2^{-1}Sigma_1)+trbig((mu_1-mu_2)^TSigma_2^{-1}(mu_1-mu_2)big)right)\
end{align}
$$
where the second step is obtained because for any scalar $a$, we have $a=tr(a)$. And $trleft(prod_{i=1}^nF_{i}right)=trleft(F_nprod_{i=1}^{n-1}F_iright)$ is applied whenever necessary.
The last equation is equal to the equation in the question when $Sigma$s are diagonal matrices
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2888353%2fhow-to-analytically-compute-kl-divergence-of-two-gaussian-distributions%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
According to http://101.110.118.57/stanford.edu/~jduchi/projects/general_notes.pdf, the KL divergence for two multivariate Gaussians in $mathbb R^n$ is computed as follows
$$
begin{align}
D_{KL}(P_1Vert P_2) &= {1over 2}E_{P_1}left[-logdetSigma_1-(x-mu_1)Sigma_1^{-1}(x-mu_1)^{T}+logdetSigma_2+(x-mu_2)Sigma_2^{-1}(x-mu_2)^{T}right]\
&={1over 2}left(log{detSigma_2over detSigma_1}+E_{P_1}left[-trbig((x-mu_1)Sigma_1^{-1}(x-mu_1)^{T})big)+trbig((x-mu_2)Sigma_2^{-1}(x-mu_2)^{T}big)right]right)\
&={1over 2}left(log{detSigma_2over detSigma_1}+E_{P_1}left[-trbig(Sigma_1^{-1}(x-mu_1)^{T}(x-mu_1))big)+trbig(Sigma_2^{-1}(x-mu_2)^{T}(x-mu_2)big)right]right)\
&={1over 2}left(log{detSigma_2over detSigma_1}-n+E_{P_1}left[trBig(Sigma_2^{-1}big(xx^T-2xmu_2^{T}+mu_2mu_2^Tbig)Big)right]right)\
&={1over 2}left(log{detSigma_2over detSigma_1}-n+E_{P_1}left[trBig(Sigma_2^{-1}big(Sigma_1+2xmu_1^T-mu_1mu_1^T-2xmu_2^{T}+mu_2mu_2^Tbig)Big)right]right)\
&={1over 2}left(log{detSigma_2over detSigma_1}-n+tr(Sigma_2^{-1}Sigma_1)+trBig(Sigma_2^{-1}E_{P_1}left[2xmu_1^T-mu_1mu_1^T-2xmu_2^{T}+mu_2mu_2^Tright]Big)right)\
&={1over 2}left(log{detSigma_2over detSigma_1}-n+tr(Sigma_2^{-1}Sigma_1)+trBig(mu_1^TSigma_2^{-1}mu_1-2mu_1^TSigma_2^{-1}mu_2+mu_2^TSigma_2^{-1}mu_2Big)right)\
&={1over 2}left(log{detSigma_2over detSigma_1}-n+tr(Sigma_2^{-1}Sigma_1)+trbig((mu_1-mu_2)^TSigma_2^{-1}(mu_1-mu_2)big)right)\
end{align}
$$
where the second step is obtained because for any scalar $a$, we have $a=tr(a)$. And $trleft(prod_{i=1}^nF_{i}right)=trleft(F_nprod_{i=1}^{n-1}F_iright)$ is applied whenever necessary.
The last equation is equal to the equation in the question when $Sigma$s are diagonal matrices
$endgroup$
add a comment |
$begingroup$
According to http://101.110.118.57/stanford.edu/~jduchi/projects/general_notes.pdf, the KL divergence for two multivariate Gaussians in $mathbb R^n$ is computed as follows
$$
begin{align}
D_{KL}(P_1Vert P_2) &= {1over 2}E_{P_1}left[-logdetSigma_1-(x-mu_1)Sigma_1^{-1}(x-mu_1)^{T}+logdetSigma_2+(x-mu_2)Sigma_2^{-1}(x-mu_2)^{T}right]\
&={1over 2}left(log{detSigma_2over detSigma_1}+E_{P_1}left[-trbig((x-mu_1)Sigma_1^{-1}(x-mu_1)^{T})big)+trbig((x-mu_2)Sigma_2^{-1}(x-mu_2)^{T}big)right]right)\
&={1over 2}left(log{detSigma_2over detSigma_1}+E_{P_1}left[-trbig(Sigma_1^{-1}(x-mu_1)^{T}(x-mu_1))big)+trbig(Sigma_2^{-1}(x-mu_2)^{T}(x-mu_2)big)right]right)\
&={1over 2}left(log{detSigma_2over detSigma_1}-n+E_{P_1}left[trBig(Sigma_2^{-1}big(xx^T-2xmu_2^{T}+mu_2mu_2^Tbig)Big)right]right)\
&={1over 2}left(log{detSigma_2over detSigma_1}-n+E_{P_1}left[trBig(Sigma_2^{-1}big(Sigma_1+2xmu_1^T-mu_1mu_1^T-2xmu_2^{T}+mu_2mu_2^Tbig)Big)right]right)\
&={1over 2}left(log{detSigma_2over detSigma_1}-n+tr(Sigma_2^{-1}Sigma_1)+trBig(Sigma_2^{-1}E_{P_1}left[2xmu_1^T-mu_1mu_1^T-2xmu_2^{T}+mu_2mu_2^Tright]Big)right)\
&={1over 2}left(log{detSigma_2over detSigma_1}-n+tr(Sigma_2^{-1}Sigma_1)+trBig(mu_1^TSigma_2^{-1}mu_1-2mu_1^TSigma_2^{-1}mu_2+mu_2^TSigma_2^{-1}mu_2Big)right)\
&={1over 2}left(log{detSigma_2over detSigma_1}-n+tr(Sigma_2^{-1}Sigma_1)+trbig((mu_1-mu_2)^TSigma_2^{-1}(mu_1-mu_2)big)right)\
end{align}
$$
where the second step is obtained because for any scalar $a$, we have $a=tr(a)$. And $trleft(prod_{i=1}^nF_{i}right)=trleft(F_nprod_{i=1}^{n-1}F_iright)$ is applied whenever necessary.
The last equation is equal to the equation in the question when $Sigma$s are diagonal matrices
$endgroup$
add a comment |
$begingroup$
According to http://101.110.118.57/stanford.edu/~jduchi/projects/general_notes.pdf, the KL divergence for two multivariate Gaussians in $mathbb R^n$ is computed as follows
$$
begin{align}
D_{KL}(P_1Vert P_2) &= {1over 2}E_{P_1}left[-logdetSigma_1-(x-mu_1)Sigma_1^{-1}(x-mu_1)^{T}+logdetSigma_2+(x-mu_2)Sigma_2^{-1}(x-mu_2)^{T}right]\
&={1over 2}left(log{detSigma_2over detSigma_1}+E_{P_1}left[-trbig((x-mu_1)Sigma_1^{-1}(x-mu_1)^{T})big)+trbig((x-mu_2)Sigma_2^{-1}(x-mu_2)^{T}big)right]right)\
&={1over 2}left(log{detSigma_2over detSigma_1}+E_{P_1}left[-trbig(Sigma_1^{-1}(x-mu_1)^{T}(x-mu_1))big)+trbig(Sigma_2^{-1}(x-mu_2)^{T}(x-mu_2)big)right]right)\
&={1over 2}left(log{detSigma_2over detSigma_1}-n+E_{P_1}left[trBig(Sigma_2^{-1}big(xx^T-2xmu_2^{T}+mu_2mu_2^Tbig)Big)right]right)\
&={1over 2}left(log{detSigma_2over detSigma_1}-n+E_{P_1}left[trBig(Sigma_2^{-1}big(Sigma_1+2xmu_1^T-mu_1mu_1^T-2xmu_2^{T}+mu_2mu_2^Tbig)Big)right]right)\
&={1over 2}left(log{detSigma_2over detSigma_1}-n+tr(Sigma_2^{-1}Sigma_1)+trBig(Sigma_2^{-1}E_{P_1}left[2xmu_1^T-mu_1mu_1^T-2xmu_2^{T}+mu_2mu_2^Tright]Big)right)\
&={1over 2}left(log{detSigma_2over detSigma_1}-n+tr(Sigma_2^{-1}Sigma_1)+trBig(mu_1^TSigma_2^{-1}mu_1-2mu_1^TSigma_2^{-1}mu_2+mu_2^TSigma_2^{-1}mu_2Big)right)\
&={1over 2}left(log{detSigma_2over detSigma_1}-n+tr(Sigma_2^{-1}Sigma_1)+trbig((mu_1-mu_2)^TSigma_2^{-1}(mu_1-mu_2)big)right)\
end{align}
$$
where the second step is obtained because for any scalar $a$, we have $a=tr(a)$. And $trleft(prod_{i=1}^nF_{i}right)=trleft(F_nprod_{i=1}^{n-1}F_iright)$ is applied whenever necessary.
The last equation is equal to the equation in the question when $Sigma$s are diagonal matrices
$endgroup$
According to http://101.110.118.57/stanford.edu/~jduchi/projects/general_notes.pdf, the KL divergence for two multivariate Gaussians in $mathbb R^n$ is computed as follows
$$
begin{align}
D_{KL}(P_1Vert P_2) &= {1over 2}E_{P_1}left[-logdetSigma_1-(x-mu_1)Sigma_1^{-1}(x-mu_1)^{T}+logdetSigma_2+(x-mu_2)Sigma_2^{-1}(x-mu_2)^{T}right]\
&={1over 2}left(log{detSigma_2over detSigma_1}+E_{P_1}left[-trbig((x-mu_1)Sigma_1^{-1}(x-mu_1)^{T})big)+trbig((x-mu_2)Sigma_2^{-1}(x-mu_2)^{T}big)right]right)\
&={1over 2}left(log{detSigma_2over detSigma_1}+E_{P_1}left[-trbig(Sigma_1^{-1}(x-mu_1)^{T}(x-mu_1))big)+trbig(Sigma_2^{-1}(x-mu_2)^{T}(x-mu_2)big)right]right)\
&={1over 2}left(log{detSigma_2over detSigma_1}-n+E_{P_1}left[trBig(Sigma_2^{-1}big(xx^T-2xmu_2^{T}+mu_2mu_2^Tbig)Big)right]right)\
&={1over 2}left(log{detSigma_2over detSigma_1}-n+E_{P_1}left[trBig(Sigma_2^{-1}big(Sigma_1+2xmu_1^T-mu_1mu_1^T-2xmu_2^{T}+mu_2mu_2^Tbig)Big)right]right)\
&={1over 2}left(log{detSigma_2over detSigma_1}-n+tr(Sigma_2^{-1}Sigma_1)+trBig(Sigma_2^{-1}E_{P_1}left[2xmu_1^T-mu_1mu_1^T-2xmu_2^{T}+mu_2mu_2^Tright]Big)right)\
&={1over 2}left(log{detSigma_2over detSigma_1}-n+tr(Sigma_2^{-1}Sigma_1)+trBig(mu_1^TSigma_2^{-1}mu_1-2mu_1^TSigma_2^{-1}mu_2+mu_2^TSigma_2^{-1}mu_2Big)right)\
&={1over 2}left(log{detSigma_2over detSigma_1}-n+tr(Sigma_2^{-1}Sigma_1)+trbig((mu_1-mu_2)^TSigma_2^{-1}(mu_1-mu_2)big)right)\
end{align}
$$
where the second step is obtained because for any scalar $a$, we have $a=tr(a)$. And $trleft(prod_{i=1}^nF_{i}right)=trleft(F_nprod_{i=1}^{n-1}F_iright)$ is applied whenever necessary.
The last equation is equal to the equation in the question when $Sigma$s are diagonal matrices
edited Dec 31 '18 at 0:27
answered Dec 31 '18 at 0:19
Sherwin ChenSherwin Chen
1657
1657
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2888353%2fhow-to-analytically-compute-kl-divergence-of-two-gaussian-distributions%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
stats.stackexchange.com/questions/60680/…
$endgroup$
– Stelios
Aug 21 '18 at 21:36