Find the area of the region bounded by the parabola $y = 2x^2$, the tangent line to this parabola at (3, 18),...
$begingroup$
Is my answer correct?
f(x) = 2x² ← this is the parabola
f(3) = 2 * 9 = 18 → the parabola passes through A (3 ; 18), so its tangent line too
f'(x) = 4x ← this is the derivative
…and the derivative is the slope of the tangent line to the curve at x
f'(3) = 4 * 3 = 12 ← this is the slope of the tangent line to the curve at x = 3
Equation of the tangent line
The typical equation of a line is: y = mx + b → where m: slope and where b: y-intercept
You know that the slope of the tangent line is 12.
The equation of the tangent line becomes: y = 12x + b
The tangent line passes through A (3 ; 18), so these coordinates must verify the equation of the tangent line.
y = 12x + b
b = y - 12x → you substitute x and y by the coordinates of the point A (3 ; 18)
b = 18 - 36 = - 18
→ The equation of the tangent line is: y = 12x - 18
Intersection between the tangent line to the curve and the x-axis: → when y = 0
y = 12x - 18 → when y = 0
12x - 18 = 0
12x = 18
x = 3/2
→ Point B (3/2 ; 0)
Intersection between the vertical line passes through the point A and the x-axis: → when x = 3
→ Point C (3 ; 0)
The equation of the vertical line is: x = 3
Area of the region bounded by the parabola y = 2x², the tangent line to this parabola at (3 ; 18), and the x-axis.
= (area of the region bounded by the parabola y = 2x² and the x-axis) - (area of the triangle ABC)
= [∫ (from 0 to 3) of the parabola] - [(xC - xB).(yA - yC)/2]
= [∫ (from 0 to 3) 2x².dx] - [(xC - xB).(yA - yC)/2]
= { [(2/3).x³] from 0 to 3 } - { [3 - (3/2)].(18 - 0)/2 }
= [(2/3) * 3³] - { [(6/2) - (3/2)] * 9 }
= [(2/3) * 27] - { [(3/2) * 9 }
= 18 - (27/2)
= (36/2) - (27/2)
= 9/2 square unit
calculus
$endgroup$
add a comment |
$begingroup$
Is my answer correct?
f(x) = 2x² ← this is the parabola
f(3) = 2 * 9 = 18 → the parabola passes through A (3 ; 18), so its tangent line too
f'(x) = 4x ← this is the derivative
…and the derivative is the slope of the tangent line to the curve at x
f'(3) = 4 * 3 = 12 ← this is the slope of the tangent line to the curve at x = 3
Equation of the tangent line
The typical equation of a line is: y = mx + b → where m: slope and where b: y-intercept
You know that the slope of the tangent line is 12.
The equation of the tangent line becomes: y = 12x + b
The tangent line passes through A (3 ; 18), so these coordinates must verify the equation of the tangent line.
y = 12x + b
b = y - 12x → you substitute x and y by the coordinates of the point A (3 ; 18)
b = 18 - 36 = - 18
→ The equation of the tangent line is: y = 12x - 18
Intersection between the tangent line to the curve and the x-axis: → when y = 0
y = 12x - 18 → when y = 0
12x - 18 = 0
12x = 18
x = 3/2
→ Point B (3/2 ; 0)
Intersection between the vertical line passes through the point A and the x-axis: → when x = 3
→ Point C (3 ; 0)
The equation of the vertical line is: x = 3
Area of the region bounded by the parabola y = 2x², the tangent line to this parabola at (3 ; 18), and the x-axis.
= (area of the region bounded by the parabola y = 2x² and the x-axis) - (area of the triangle ABC)
= [∫ (from 0 to 3) of the parabola] - [(xC - xB).(yA - yC)/2]
= [∫ (from 0 to 3) 2x².dx] - [(xC - xB).(yA - yC)/2]
= { [(2/3).x³] from 0 to 3 } - { [3 - (3/2)].(18 - 0)/2 }
= [(2/3) * 3³] - { [(6/2) - (3/2)] * 9 }
= [(2/3) * 27] - { [(3/2) * 9 }
= 18 - (27/2)
= (36/2) - (27/2)
= 9/2 square unit
calculus
$endgroup$
2
$begingroup$
Well explained. The method, answer are correct.
$endgroup$
– André Nicolas
Oct 31 '15 at 0:33
$begingroup$
Hint: to check your own work on such integrals, make a sketch of the situation.
$endgroup$
– B. Pasternak
Oct 31 '15 at 8:27
add a comment |
$begingroup$
Is my answer correct?
f(x) = 2x² ← this is the parabola
f(3) = 2 * 9 = 18 → the parabola passes through A (3 ; 18), so its tangent line too
f'(x) = 4x ← this is the derivative
…and the derivative is the slope of the tangent line to the curve at x
f'(3) = 4 * 3 = 12 ← this is the slope of the tangent line to the curve at x = 3
Equation of the tangent line
The typical equation of a line is: y = mx + b → where m: slope and where b: y-intercept
You know that the slope of the tangent line is 12.
The equation of the tangent line becomes: y = 12x + b
The tangent line passes through A (3 ; 18), so these coordinates must verify the equation of the tangent line.
y = 12x + b
b = y - 12x → you substitute x and y by the coordinates of the point A (3 ; 18)
b = 18 - 36 = - 18
→ The equation of the tangent line is: y = 12x - 18
Intersection between the tangent line to the curve and the x-axis: → when y = 0
y = 12x - 18 → when y = 0
12x - 18 = 0
12x = 18
x = 3/2
→ Point B (3/2 ; 0)
Intersection between the vertical line passes through the point A and the x-axis: → when x = 3
→ Point C (3 ; 0)
The equation of the vertical line is: x = 3
Area of the region bounded by the parabola y = 2x², the tangent line to this parabola at (3 ; 18), and the x-axis.
= (area of the region bounded by the parabola y = 2x² and the x-axis) - (area of the triangle ABC)
= [∫ (from 0 to 3) of the parabola] - [(xC - xB).(yA - yC)/2]
= [∫ (from 0 to 3) 2x².dx] - [(xC - xB).(yA - yC)/2]
= { [(2/3).x³] from 0 to 3 } - { [3 - (3/2)].(18 - 0)/2 }
= [(2/3) * 3³] - { [(6/2) - (3/2)] * 9 }
= [(2/3) * 27] - { [(3/2) * 9 }
= 18 - (27/2)
= (36/2) - (27/2)
= 9/2 square unit
calculus
$endgroup$
Is my answer correct?
f(x) = 2x² ← this is the parabola
f(3) = 2 * 9 = 18 → the parabola passes through A (3 ; 18), so its tangent line too
f'(x) = 4x ← this is the derivative
…and the derivative is the slope of the tangent line to the curve at x
f'(3) = 4 * 3 = 12 ← this is the slope of the tangent line to the curve at x = 3
Equation of the tangent line
The typical equation of a line is: y = mx + b → where m: slope and where b: y-intercept
You know that the slope of the tangent line is 12.
The equation of the tangent line becomes: y = 12x + b
The tangent line passes through A (3 ; 18), so these coordinates must verify the equation of the tangent line.
y = 12x + b
b = y - 12x → you substitute x and y by the coordinates of the point A (3 ; 18)
b = 18 - 36 = - 18
→ The equation of the tangent line is: y = 12x - 18
Intersection between the tangent line to the curve and the x-axis: → when y = 0
y = 12x - 18 → when y = 0
12x - 18 = 0
12x = 18
x = 3/2
→ Point B (3/2 ; 0)
Intersection between the vertical line passes through the point A and the x-axis: → when x = 3
→ Point C (3 ; 0)
The equation of the vertical line is: x = 3
Area of the region bounded by the parabola y = 2x², the tangent line to this parabola at (3 ; 18), and the x-axis.
= (area of the region bounded by the parabola y = 2x² and the x-axis) - (area of the triangle ABC)
= [∫ (from 0 to 3) of the parabola] - [(xC - xB).(yA - yC)/2]
= [∫ (from 0 to 3) 2x².dx] - [(xC - xB).(yA - yC)/2]
= { [(2/3).x³] from 0 to 3 } - { [3 - (3/2)].(18 - 0)/2 }
= [(2/3) * 3³] - { [(6/2) - (3/2)] * 9 }
= [(2/3) * 27] - { [(3/2) * 9 }
= 18 - (27/2)
= (36/2) - (27/2)
= 9/2 square unit
calculus
calculus
asked Oct 31 '15 at 0:04
CetshwayoCetshwayo
1,49152655
1,49152655
2
$begingroup$
Well explained. The method, answer are correct.
$endgroup$
– André Nicolas
Oct 31 '15 at 0:33
$begingroup$
Hint: to check your own work on such integrals, make a sketch of the situation.
$endgroup$
– B. Pasternak
Oct 31 '15 at 8:27
add a comment |
2
$begingroup$
Well explained. The method, answer are correct.
$endgroup$
– André Nicolas
Oct 31 '15 at 0:33
$begingroup$
Hint: to check your own work on such integrals, make a sketch of the situation.
$endgroup$
– B. Pasternak
Oct 31 '15 at 8:27
2
2
$begingroup$
Well explained. The method, answer are correct.
$endgroup$
– André Nicolas
Oct 31 '15 at 0:33
$begingroup$
Well explained. The method, answer are correct.
$endgroup$
– André Nicolas
Oct 31 '15 at 0:33
$begingroup$
Hint: to check your own work on such integrals, make a sketch of the situation.
$endgroup$
– B. Pasternak
Oct 31 '15 at 8:27
$begingroup$
Hint: to check your own work on such integrals, make a sketch of the situation.
$endgroup$
– B. Pasternak
Oct 31 '15 at 8:27
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
$y=2x^2$ has derivative $y'=4x$. So the derivative will be positive for all $x>0$. This means the tangent line will intersect the x-axis at some point $x_a<x$ for a given x.
This means the area under the parabola and bounded by the tangent line will have two separate regions, A region with $x<x_a$ which is made up of only area under the parabola, and a region $x>x_a$ where area is from the area between the parabola and the tangent to $(3,18)$.
The equation of a tangent line at $(x_0,y_0)$ is $$frac{y-f(x_0)}{x-x_0}=f'(x_0)$$
Or : $y=f'(x_0)(x-x_0)+f(x_0)$
The x intercept happens where $y=0$.
Requiring $y=0$ implies an x intercept of $x_c=frac{-f(x_0)}{f'(x_0)}+x_0$
So from the above arguments with $x_0=3$:
$$A=int_0^{x_c}2x^2dx+int_{x_c}^32x^2-(12x-18)dx$$
But this can be simplified. The area under the tangent line is a triangle. So the the parabola can be integrated ignoring the tangent line, and then subtracting the area of the triangle.
From the above, we know $(x_0-x_c)=frac{f(x_0)}{f'(x_0)}$, the base of the triangle. The height is just $f(x_0)$.
So the area of the triangle is $A_t=frac{1}{2}frac{f(x_0)^2}{f'(x_0)}$
So:
$$A=int_0^{x_0}f(x)dx-frac{1}{2}frac{f(x_0)^2}{f'(x_0)}$$
and solve for $x_0=3$.
In this form, an expression can be found for $x_0$ which extremizes the area.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1505741%2ffind-the-area-of-the-region-bounded-by-the-parabola-y-2x2-the-tangent-line%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$y=2x^2$ has derivative $y'=4x$. So the derivative will be positive for all $x>0$. This means the tangent line will intersect the x-axis at some point $x_a<x$ for a given x.
This means the area under the parabola and bounded by the tangent line will have two separate regions, A region with $x<x_a$ which is made up of only area under the parabola, and a region $x>x_a$ where area is from the area between the parabola and the tangent to $(3,18)$.
The equation of a tangent line at $(x_0,y_0)$ is $$frac{y-f(x_0)}{x-x_0}=f'(x_0)$$
Or : $y=f'(x_0)(x-x_0)+f(x_0)$
The x intercept happens where $y=0$.
Requiring $y=0$ implies an x intercept of $x_c=frac{-f(x_0)}{f'(x_0)}+x_0$
So from the above arguments with $x_0=3$:
$$A=int_0^{x_c}2x^2dx+int_{x_c}^32x^2-(12x-18)dx$$
But this can be simplified. The area under the tangent line is a triangle. So the the parabola can be integrated ignoring the tangent line, and then subtracting the area of the triangle.
From the above, we know $(x_0-x_c)=frac{f(x_0)}{f'(x_0)}$, the base of the triangle. The height is just $f(x_0)$.
So the area of the triangle is $A_t=frac{1}{2}frac{f(x_0)^2}{f'(x_0)}$
So:
$$A=int_0^{x_0}f(x)dx-frac{1}{2}frac{f(x_0)^2}{f'(x_0)}$$
and solve for $x_0=3$.
In this form, an expression can be found for $x_0$ which extremizes the area.
$endgroup$
add a comment |
$begingroup$
$y=2x^2$ has derivative $y'=4x$. So the derivative will be positive for all $x>0$. This means the tangent line will intersect the x-axis at some point $x_a<x$ for a given x.
This means the area under the parabola and bounded by the tangent line will have two separate regions, A region with $x<x_a$ which is made up of only area under the parabola, and a region $x>x_a$ where area is from the area between the parabola and the tangent to $(3,18)$.
The equation of a tangent line at $(x_0,y_0)$ is $$frac{y-f(x_0)}{x-x_0}=f'(x_0)$$
Or : $y=f'(x_0)(x-x_0)+f(x_0)$
The x intercept happens where $y=0$.
Requiring $y=0$ implies an x intercept of $x_c=frac{-f(x_0)}{f'(x_0)}+x_0$
So from the above arguments with $x_0=3$:
$$A=int_0^{x_c}2x^2dx+int_{x_c}^32x^2-(12x-18)dx$$
But this can be simplified. The area under the tangent line is a triangle. So the the parabola can be integrated ignoring the tangent line, and then subtracting the area of the triangle.
From the above, we know $(x_0-x_c)=frac{f(x_0)}{f'(x_0)}$, the base of the triangle. The height is just $f(x_0)$.
So the area of the triangle is $A_t=frac{1}{2}frac{f(x_0)^2}{f'(x_0)}$
So:
$$A=int_0^{x_0}f(x)dx-frac{1}{2}frac{f(x_0)^2}{f'(x_0)}$$
and solve for $x_0=3$.
In this form, an expression can be found for $x_0$ which extremizes the area.
$endgroup$
add a comment |
$begingroup$
$y=2x^2$ has derivative $y'=4x$. So the derivative will be positive for all $x>0$. This means the tangent line will intersect the x-axis at some point $x_a<x$ for a given x.
This means the area under the parabola and bounded by the tangent line will have two separate regions, A region with $x<x_a$ which is made up of only area under the parabola, and a region $x>x_a$ where area is from the area between the parabola and the tangent to $(3,18)$.
The equation of a tangent line at $(x_0,y_0)$ is $$frac{y-f(x_0)}{x-x_0}=f'(x_0)$$
Or : $y=f'(x_0)(x-x_0)+f(x_0)$
The x intercept happens where $y=0$.
Requiring $y=0$ implies an x intercept of $x_c=frac{-f(x_0)}{f'(x_0)}+x_0$
So from the above arguments with $x_0=3$:
$$A=int_0^{x_c}2x^2dx+int_{x_c}^32x^2-(12x-18)dx$$
But this can be simplified. The area under the tangent line is a triangle. So the the parabola can be integrated ignoring the tangent line, and then subtracting the area of the triangle.
From the above, we know $(x_0-x_c)=frac{f(x_0)}{f'(x_0)}$, the base of the triangle. The height is just $f(x_0)$.
So the area of the triangle is $A_t=frac{1}{2}frac{f(x_0)^2}{f'(x_0)}$
So:
$$A=int_0^{x_0}f(x)dx-frac{1}{2}frac{f(x_0)^2}{f'(x_0)}$$
and solve for $x_0=3$.
In this form, an expression can be found for $x_0$ which extremizes the area.
$endgroup$
$y=2x^2$ has derivative $y'=4x$. So the derivative will be positive for all $x>0$. This means the tangent line will intersect the x-axis at some point $x_a<x$ for a given x.
This means the area under the parabola and bounded by the tangent line will have two separate regions, A region with $x<x_a$ which is made up of only area under the parabola, and a region $x>x_a$ where area is from the area between the parabola and the tangent to $(3,18)$.
The equation of a tangent line at $(x_0,y_0)$ is $$frac{y-f(x_0)}{x-x_0}=f'(x_0)$$
Or : $y=f'(x_0)(x-x_0)+f(x_0)$
The x intercept happens where $y=0$.
Requiring $y=0$ implies an x intercept of $x_c=frac{-f(x_0)}{f'(x_0)}+x_0$
So from the above arguments with $x_0=3$:
$$A=int_0^{x_c}2x^2dx+int_{x_c}^32x^2-(12x-18)dx$$
But this can be simplified. The area under the tangent line is a triangle. So the the parabola can be integrated ignoring the tangent line, and then subtracting the area of the triangle.
From the above, we know $(x_0-x_c)=frac{f(x_0)}{f'(x_0)}$, the base of the triangle. The height is just $f(x_0)$.
So the area of the triangle is $A_t=frac{1}{2}frac{f(x_0)^2}{f'(x_0)}$
So:
$$A=int_0^{x_0}f(x)dx-frac{1}{2}frac{f(x_0)^2}{f'(x_0)}$$
and solve for $x_0=3$.
In this form, an expression can be found for $x_0$ which extremizes the area.
answered Oct 18 '18 at 2:37
TurlocTheRedTurlocTheRed
906311
906311
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1505741%2ffind-the-area-of-the-region-bounded-by-the-parabola-y-2x2-the-tangent-line%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
Well explained. The method, answer are correct.
$endgroup$
– André Nicolas
Oct 31 '15 at 0:33
$begingroup$
Hint: to check your own work on such integrals, make a sketch of the situation.
$endgroup$
– B. Pasternak
Oct 31 '15 at 8:27