Coordination change for integrals and determinant of the jacobian matrix
$begingroup$
so I am currently learning about flow integrals and my book had an example which confused me. (Example 1) As you see, in Example 1, they don't care about the determinant of the jacobian of the coordination change. They just switch coordinats without transforming the integral properly. In Example 2 they actually use the determinant of the jacobian of the coordination change.
Let me make two examples:
Example 1:
Calculate the flow of $v=(0,0,1-z)$ from bottom up through
$$H={(x,y,z)in mathbb R^3 | x^2+y^2+z^2=1, z>0}$$
Parametrization:
$$Phi:[0,2pi]times[0,pi/2]tomathbb R^3, quad (u,v)mapsto begin{pmatrix}sin vcos u \ sin vsin u\ cos vend{pmatrix}$$
Normal vector:
$$Phi_vtimes Phi_u = begin{pmatrix}sin^2 vcos u \ sin vsin^2 u\ sin v cos vend{pmatrix}$$
Flow integraL:
$int_H vcdot ndo = int_0^{2pi}duint_0^{pi/2}dv begin{pmatrix}0\0\1-cos vend{pmatrix}cdotbegin{pmatrix}sin^2 vcos u \ sin vsin^2 u\ sin v cos vend{pmatrix}$
$=2piint_0^{pi/2}dv sin v cos v(1-cos v)$
$=2piint_0^{pi/2}dv sin v cos v - 2pi int_0^{pi/2}dv sin v cos^2 v=...=pi/3$
Example 2: We want to calculate the flow of $v=(xz,z,y)$ through the unit ball, centered around $O=(0,0,0)$ using Gauss's Divergene Theorem.
We have to calculate $int_S vcdot n do = int_{B_1} div(v) dmu$
$div(v)=z$
We use spherical coordinates. So: $dxdydz=r^2drsinphi dphi dvarphi$
$int_s v cdot n do = int_{B_1} zdmu = int_0^1 r^2 dr int_0^pi sinphi dphi int_0^{2pi}dvarphi cdot rcos phi=...=0$
calculus integration
$endgroup$
add a comment |
$begingroup$
so I am currently learning about flow integrals and my book had an example which confused me. (Example 1) As you see, in Example 1, they don't care about the determinant of the jacobian of the coordination change. They just switch coordinats without transforming the integral properly. In Example 2 they actually use the determinant of the jacobian of the coordination change.
Let me make two examples:
Example 1:
Calculate the flow of $v=(0,0,1-z)$ from bottom up through
$$H={(x,y,z)in mathbb R^3 | x^2+y^2+z^2=1, z>0}$$
Parametrization:
$$Phi:[0,2pi]times[0,pi/2]tomathbb R^3, quad (u,v)mapsto begin{pmatrix}sin vcos u \ sin vsin u\ cos vend{pmatrix}$$
Normal vector:
$$Phi_vtimes Phi_u = begin{pmatrix}sin^2 vcos u \ sin vsin^2 u\ sin v cos vend{pmatrix}$$
Flow integraL:
$int_H vcdot ndo = int_0^{2pi}duint_0^{pi/2}dv begin{pmatrix}0\0\1-cos vend{pmatrix}cdotbegin{pmatrix}sin^2 vcos u \ sin vsin^2 u\ sin v cos vend{pmatrix}$
$=2piint_0^{pi/2}dv sin v cos v(1-cos v)$
$=2piint_0^{pi/2}dv sin v cos v - 2pi int_0^{pi/2}dv sin v cos^2 v=...=pi/3$
Example 2: We want to calculate the flow of $v=(xz,z,y)$ through the unit ball, centered around $O=(0,0,0)$ using Gauss's Divergene Theorem.
We have to calculate $int_S vcdot n do = int_{B_1} div(v) dmu$
$div(v)=z$
We use spherical coordinates. So: $dxdydz=r^2drsinphi dphi dvarphi$
$int_s v cdot n do = int_{B_1} zdmu = int_0^1 r^2 dr int_0^pi sinphi dphi int_0^{2pi}dvarphi cdot rcos phi=...=0$
calculus integration
$endgroup$
1
$begingroup$
The jacobian is absorbed into $Phi_vtimes Phi_u$. If you go through the derivation of the formula, you will see where it arises
$endgroup$
– Matematleta
Dec 31 '18 at 15:45
$begingroup$
Yeah I just went through everything again and the normal vector$n$ absorbs it. So if we calculate a given flow using Gauss's Divergence Theorem, we actually have to take it into account but if we use the normal definition, we don't - right?
$endgroup$
– xotix
Dec 31 '18 at 15:59
add a comment |
$begingroup$
so I am currently learning about flow integrals and my book had an example which confused me. (Example 1) As you see, in Example 1, they don't care about the determinant of the jacobian of the coordination change. They just switch coordinats without transforming the integral properly. In Example 2 they actually use the determinant of the jacobian of the coordination change.
Let me make two examples:
Example 1:
Calculate the flow of $v=(0,0,1-z)$ from bottom up through
$$H={(x,y,z)in mathbb R^3 | x^2+y^2+z^2=1, z>0}$$
Parametrization:
$$Phi:[0,2pi]times[0,pi/2]tomathbb R^3, quad (u,v)mapsto begin{pmatrix}sin vcos u \ sin vsin u\ cos vend{pmatrix}$$
Normal vector:
$$Phi_vtimes Phi_u = begin{pmatrix}sin^2 vcos u \ sin vsin^2 u\ sin v cos vend{pmatrix}$$
Flow integraL:
$int_H vcdot ndo = int_0^{2pi}duint_0^{pi/2}dv begin{pmatrix}0\0\1-cos vend{pmatrix}cdotbegin{pmatrix}sin^2 vcos u \ sin vsin^2 u\ sin v cos vend{pmatrix}$
$=2piint_0^{pi/2}dv sin v cos v(1-cos v)$
$=2piint_0^{pi/2}dv sin v cos v - 2pi int_0^{pi/2}dv sin v cos^2 v=...=pi/3$
Example 2: We want to calculate the flow of $v=(xz,z,y)$ through the unit ball, centered around $O=(0,0,0)$ using Gauss's Divergene Theorem.
We have to calculate $int_S vcdot n do = int_{B_1} div(v) dmu$
$div(v)=z$
We use spherical coordinates. So: $dxdydz=r^2drsinphi dphi dvarphi$
$int_s v cdot n do = int_{B_1} zdmu = int_0^1 r^2 dr int_0^pi sinphi dphi int_0^{2pi}dvarphi cdot rcos phi=...=0$
calculus integration
$endgroup$
so I am currently learning about flow integrals and my book had an example which confused me. (Example 1) As you see, in Example 1, they don't care about the determinant of the jacobian of the coordination change. They just switch coordinats without transforming the integral properly. In Example 2 they actually use the determinant of the jacobian of the coordination change.
Let me make two examples:
Example 1:
Calculate the flow of $v=(0,0,1-z)$ from bottom up through
$$H={(x,y,z)in mathbb R^3 | x^2+y^2+z^2=1, z>0}$$
Parametrization:
$$Phi:[0,2pi]times[0,pi/2]tomathbb R^3, quad (u,v)mapsto begin{pmatrix}sin vcos u \ sin vsin u\ cos vend{pmatrix}$$
Normal vector:
$$Phi_vtimes Phi_u = begin{pmatrix}sin^2 vcos u \ sin vsin^2 u\ sin v cos vend{pmatrix}$$
Flow integraL:
$int_H vcdot ndo = int_0^{2pi}duint_0^{pi/2}dv begin{pmatrix}0\0\1-cos vend{pmatrix}cdotbegin{pmatrix}sin^2 vcos u \ sin vsin^2 u\ sin v cos vend{pmatrix}$
$=2piint_0^{pi/2}dv sin v cos v(1-cos v)$
$=2piint_0^{pi/2}dv sin v cos v - 2pi int_0^{pi/2}dv sin v cos^2 v=...=pi/3$
Example 2: We want to calculate the flow of $v=(xz,z,y)$ through the unit ball, centered around $O=(0,0,0)$ using Gauss's Divergene Theorem.
We have to calculate $int_S vcdot n do = int_{B_1} div(v) dmu$
$div(v)=z$
We use spherical coordinates. So: $dxdydz=r^2drsinphi dphi dvarphi$
$int_s v cdot n do = int_{B_1} zdmu = int_0^1 r^2 dr int_0^pi sinphi dphi int_0^{2pi}dvarphi cdot rcos phi=...=0$
calculus integration
calculus integration
asked Dec 31 '18 at 15:23
xotixxotix
291411
291411
1
$begingroup$
The jacobian is absorbed into $Phi_vtimes Phi_u$. If you go through the derivation of the formula, you will see where it arises
$endgroup$
– Matematleta
Dec 31 '18 at 15:45
$begingroup$
Yeah I just went through everything again and the normal vector$n$ absorbs it. So if we calculate a given flow using Gauss's Divergence Theorem, we actually have to take it into account but if we use the normal definition, we don't - right?
$endgroup$
– xotix
Dec 31 '18 at 15:59
add a comment |
1
$begingroup$
The jacobian is absorbed into $Phi_vtimes Phi_u$. If you go through the derivation of the formula, you will see where it arises
$endgroup$
– Matematleta
Dec 31 '18 at 15:45
$begingroup$
Yeah I just went through everything again and the normal vector$n$ absorbs it. So if we calculate a given flow using Gauss's Divergence Theorem, we actually have to take it into account but if we use the normal definition, we don't - right?
$endgroup$
– xotix
Dec 31 '18 at 15:59
1
1
$begingroup$
The jacobian is absorbed into $Phi_vtimes Phi_u$. If you go through the derivation of the formula, you will see where it arises
$endgroup$
– Matematleta
Dec 31 '18 at 15:45
$begingroup$
The jacobian is absorbed into $Phi_vtimes Phi_u$. If you go through the derivation of the formula, you will see where it arises
$endgroup$
– Matematleta
Dec 31 '18 at 15:45
$begingroup$
Yeah I just went through everything again and the normal vector$n$ absorbs it. So if we calculate a given flow using Gauss's Divergence Theorem, we actually have to take it into account but if we use the normal definition, we don't - right?
$endgroup$
– xotix
Dec 31 '18 at 15:59
$begingroup$
Yeah I just went through everything again and the normal vector$n$ absorbs it. So if we calculate a given flow using Gauss's Divergence Theorem, we actually have to take it into account but if we use the normal definition, we don't - right?
$endgroup$
– xotix
Dec 31 '18 at 15:59
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3057803%2fcoordination-change-for-integrals-and-determinant-of-the-jacobian-matrix%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3057803%2fcoordination-change-for-integrals-and-determinant-of-the-jacobian-matrix%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
The jacobian is absorbed into $Phi_vtimes Phi_u$. If you go through the derivation of the formula, you will see where it arises
$endgroup$
– Matematleta
Dec 31 '18 at 15:45
$begingroup$
Yeah I just went through everything again and the normal vector$n$ absorbs it. So if we calculate a given flow using Gauss's Divergence Theorem, we actually have to take it into account but if we use the normal definition, we don't - right?
$endgroup$
– xotix
Dec 31 '18 at 15:59