Why does $limlimits_{thetatoinfty}nsinfrac {theta}n=theta$
$begingroup$
Questions:
- Why do we have$$limlimits_{thetatoinfty}nsindfrac {theta}n=thetatag1$$
- How do we prove $(1)$?
I started off with the well known limit:$$limlimits_{thetato 0}dfrac {sintheta}{theta}=1tag2$$
And substituted $theta:=dfrac theta n$ into $(1)$ to get$$limlimits_{frac theta nto 0}dfrac {sindfrac theta n}{dfrac theta n}=limlimits_{frac theta nto0}dfrac {nsinfrac theta n}{theta}tag3$$
However after that, I'm not sure what to do. Apparently, the RHS of $(1)$ has a limit of $1$, so that the limit of $nsinfrac theta n=theta$.
limits
$endgroup$
add a comment |
$begingroup$
Questions:
- Why do we have$$limlimits_{thetatoinfty}nsindfrac {theta}n=thetatag1$$
- How do we prove $(1)$?
I started off with the well known limit:$$limlimits_{thetato 0}dfrac {sintheta}{theta}=1tag2$$
And substituted $theta:=dfrac theta n$ into $(1)$ to get$$limlimits_{frac theta nto 0}dfrac {sindfrac theta n}{dfrac theta n}=limlimits_{frac theta nto0}dfrac {nsinfrac theta n}{theta}tag3$$
However after that, I'm not sure what to do. Apparently, the RHS of $(1)$ has a limit of $1$, so that the limit of $nsinfrac theta n=theta$.
limits
$endgroup$
2
$begingroup$
Do you mean $lim_{ntoinfty}$?
$endgroup$
– carmichael561
Feb 15 '17 at 1:14
2
$begingroup$
It is false that $lim_{thetatoinfty}dots=theta$, since $theta$ itself goes to infinity, but $sin$ is bounded. Perhaps you meant the limit as $ntoinfty$?
$endgroup$
– Simply Beautiful Art
Feb 15 '17 at 1:15
$begingroup$
The expression $lim_{thetatodots}dots = theta$ isn't even a valid equation because $theta$ isn't a free variable of the left hand side.
$endgroup$
– mniip
Feb 15 '17 at 1:26
add a comment |
$begingroup$
Questions:
- Why do we have$$limlimits_{thetatoinfty}nsindfrac {theta}n=thetatag1$$
- How do we prove $(1)$?
I started off with the well known limit:$$limlimits_{thetato 0}dfrac {sintheta}{theta}=1tag2$$
And substituted $theta:=dfrac theta n$ into $(1)$ to get$$limlimits_{frac theta nto 0}dfrac {sindfrac theta n}{dfrac theta n}=limlimits_{frac theta nto0}dfrac {nsinfrac theta n}{theta}tag3$$
However after that, I'm not sure what to do. Apparently, the RHS of $(1)$ has a limit of $1$, so that the limit of $nsinfrac theta n=theta$.
limits
$endgroup$
Questions:
- Why do we have$$limlimits_{thetatoinfty}nsindfrac {theta}n=thetatag1$$
- How do we prove $(1)$?
I started off with the well known limit:$$limlimits_{thetato 0}dfrac {sintheta}{theta}=1tag2$$
And substituted $theta:=dfrac theta n$ into $(1)$ to get$$limlimits_{frac theta nto 0}dfrac {sindfrac theta n}{dfrac theta n}=limlimits_{frac theta nto0}dfrac {nsinfrac theta n}{theta}tag3$$
However after that, I'm not sure what to do. Apparently, the RHS of $(1)$ has a limit of $1$, so that the limit of $nsinfrac theta n=theta$.
limits
limits
edited Dec 13 '18 at 14:38
Martin Sleziak
44.8k10118272
44.8k10118272
asked Feb 15 '17 at 1:13
FrankFrank
3,7751632
3,7751632
2
$begingroup$
Do you mean $lim_{ntoinfty}$?
$endgroup$
– carmichael561
Feb 15 '17 at 1:14
2
$begingroup$
It is false that $lim_{thetatoinfty}dots=theta$, since $theta$ itself goes to infinity, but $sin$ is bounded. Perhaps you meant the limit as $ntoinfty$?
$endgroup$
– Simply Beautiful Art
Feb 15 '17 at 1:15
$begingroup$
The expression $lim_{thetatodots}dots = theta$ isn't even a valid equation because $theta$ isn't a free variable of the left hand side.
$endgroup$
– mniip
Feb 15 '17 at 1:26
add a comment |
2
$begingroup$
Do you mean $lim_{ntoinfty}$?
$endgroup$
– carmichael561
Feb 15 '17 at 1:14
2
$begingroup$
It is false that $lim_{thetatoinfty}dots=theta$, since $theta$ itself goes to infinity, but $sin$ is bounded. Perhaps you meant the limit as $ntoinfty$?
$endgroup$
– Simply Beautiful Art
Feb 15 '17 at 1:15
$begingroup$
The expression $lim_{thetatodots}dots = theta$ isn't even a valid equation because $theta$ isn't a free variable of the left hand side.
$endgroup$
– mniip
Feb 15 '17 at 1:26
2
2
$begingroup$
Do you mean $lim_{ntoinfty}$?
$endgroup$
– carmichael561
Feb 15 '17 at 1:14
$begingroup$
Do you mean $lim_{ntoinfty}$?
$endgroup$
– carmichael561
Feb 15 '17 at 1:14
2
2
$begingroup$
It is false that $lim_{thetatoinfty}dots=theta$, since $theta$ itself goes to infinity, but $sin$ is bounded. Perhaps you meant the limit as $ntoinfty$?
$endgroup$
– Simply Beautiful Art
Feb 15 '17 at 1:15
$begingroup$
It is false that $lim_{thetatoinfty}dots=theta$, since $theta$ itself goes to infinity, but $sin$ is bounded. Perhaps you meant the limit as $ntoinfty$?
$endgroup$
– Simply Beautiful Art
Feb 15 '17 at 1:15
$begingroup$
The expression $lim_{thetatodots}dots = theta$ isn't even a valid equation because $theta$ isn't a free variable of the left hand side.
$endgroup$
– mniip
Feb 15 '17 at 1:26
$begingroup$
The expression $lim_{thetatodots}dots = theta$ isn't even a valid equation because $theta$ isn't a free variable of the left hand side.
$endgroup$
– mniip
Feb 15 '17 at 1:26
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
I think you meant $lim_{nto infty}n sinleft(frac{theta}{n}right) = theta$, which you basically proved is true:
$lim_{nto infty}n sinleft(frac{theta}{n}right) = lim_{nto infty} left( thetacdot frac{sinleft(frac{theta}{n}right)}{frac{theta}{n}} right) = theta cdot lim_{nto infty} left( frac{sinleft(frac{theta}{n}right)}{frac{theta}{n}} right) = theta cdot 1 =theta$
$endgroup$
add a comment |
$begingroup$
Assuming you meant $lim_{ntoinfty}$, note that by letting $u=theta/n$, we get
$$lim_{ntoinfty}nsinfractheta n=thetalim_{uto0^{pm}}frac{sin u}u=thetatimes1$$
where the side we approach depends on the sign of theta, but it doesn't affect the limit.
$endgroup$
add a comment |
$begingroup$
Or, with equivalents, $sindfractheta nsim_infty dfractheta n$, so
$$nsinfractheta nsim_infty nfractheta n=theta.$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2144898%2fwhy-does-lim-limits-theta-to-inftyn-sin-frac-thetan-theta%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
I think you meant $lim_{nto infty}n sinleft(frac{theta}{n}right) = theta$, which you basically proved is true:
$lim_{nto infty}n sinleft(frac{theta}{n}right) = lim_{nto infty} left( thetacdot frac{sinleft(frac{theta}{n}right)}{frac{theta}{n}} right) = theta cdot lim_{nto infty} left( frac{sinleft(frac{theta}{n}right)}{frac{theta}{n}} right) = theta cdot 1 =theta$
$endgroup$
add a comment |
$begingroup$
I think you meant $lim_{nto infty}n sinleft(frac{theta}{n}right) = theta$, which you basically proved is true:
$lim_{nto infty}n sinleft(frac{theta}{n}right) = lim_{nto infty} left( thetacdot frac{sinleft(frac{theta}{n}right)}{frac{theta}{n}} right) = theta cdot lim_{nto infty} left( frac{sinleft(frac{theta}{n}right)}{frac{theta}{n}} right) = theta cdot 1 =theta$
$endgroup$
add a comment |
$begingroup$
I think you meant $lim_{nto infty}n sinleft(frac{theta}{n}right) = theta$, which you basically proved is true:
$lim_{nto infty}n sinleft(frac{theta}{n}right) = lim_{nto infty} left( thetacdot frac{sinleft(frac{theta}{n}right)}{frac{theta}{n}} right) = theta cdot lim_{nto infty} left( frac{sinleft(frac{theta}{n}right)}{frac{theta}{n}} right) = theta cdot 1 =theta$
$endgroup$
I think you meant $lim_{nto infty}n sinleft(frac{theta}{n}right) = theta$, which you basically proved is true:
$lim_{nto infty}n sinleft(frac{theta}{n}right) = lim_{nto infty} left( thetacdot frac{sinleft(frac{theta}{n}right)}{frac{theta}{n}} right) = theta cdot lim_{nto infty} left( frac{sinleft(frac{theta}{n}right)}{frac{theta}{n}} right) = theta cdot 1 =theta$
answered Feb 15 '17 at 1:27
joebjoeb
2,121211
2,121211
add a comment |
add a comment |
$begingroup$
Assuming you meant $lim_{ntoinfty}$, note that by letting $u=theta/n$, we get
$$lim_{ntoinfty}nsinfractheta n=thetalim_{uto0^{pm}}frac{sin u}u=thetatimes1$$
where the side we approach depends on the sign of theta, but it doesn't affect the limit.
$endgroup$
add a comment |
$begingroup$
Assuming you meant $lim_{ntoinfty}$, note that by letting $u=theta/n$, we get
$$lim_{ntoinfty}nsinfractheta n=thetalim_{uto0^{pm}}frac{sin u}u=thetatimes1$$
where the side we approach depends on the sign of theta, but it doesn't affect the limit.
$endgroup$
add a comment |
$begingroup$
Assuming you meant $lim_{ntoinfty}$, note that by letting $u=theta/n$, we get
$$lim_{ntoinfty}nsinfractheta n=thetalim_{uto0^{pm}}frac{sin u}u=thetatimes1$$
where the side we approach depends on the sign of theta, but it doesn't affect the limit.
$endgroup$
Assuming you meant $lim_{ntoinfty}$, note that by letting $u=theta/n$, we get
$$lim_{ntoinfty}nsinfractheta n=thetalim_{uto0^{pm}}frac{sin u}u=thetatimes1$$
where the side we approach depends on the sign of theta, but it doesn't affect the limit.
answered Feb 15 '17 at 1:28
Simply Beautiful ArtSimply Beautiful Art
50.5k578182
50.5k578182
add a comment |
add a comment |
$begingroup$
Or, with equivalents, $sindfractheta nsim_infty dfractheta n$, so
$$nsinfractheta nsim_infty nfractheta n=theta.$$
$endgroup$
add a comment |
$begingroup$
Or, with equivalents, $sindfractheta nsim_infty dfractheta n$, so
$$nsinfractheta nsim_infty nfractheta n=theta.$$
$endgroup$
add a comment |
$begingroup$
Or, with equivalents, $sindfractheta nsim_infty dfractheta n$, so
$$nsinfractheta nsim_infty nfractheta n=theta.$$
$endgroup$
Or, with equivalents, $sindfractheta nsim_infty dfractheta n$, so
$$nsinfractheta nsim_infty nfractheta n=theta.$$
answered Feb 15 '17 at 1:56
BernardBernard
121k740116
121k740116
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2144898%2fwhy-does-lim-limits-theta-to-inftyn-sin-frac-thetan-theta%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
Do you mean $lim_{ntoinfty}$?
$endgroup$
– carmichael561
Feb 15 '17 at 1:14
2
$begingroup$
It is false that $lim_{thetatoinfty}dots=theta$, since $theta$ itself goes to infinity, but $sin$ is bounded. Perhaps you meant the limit as $ntoinfty$?
$endgroup$
– Simply Beautiful Art
Feb 15 '17 at 1:15
$begingroup$
The expression $lim_{thetatodots}dots = theta$ isn't even a valid equation because $theta$ isn't a free variable of the left hand side.
$endgroup$
– mniip
Feb 15 '17 at 1:26