Deriving eq 9.15 in PRML by CM Bishop
$begingroup$
In PRML by C.M. Bishop, chapter 9, (9.15) is as follows:
$$
mathcal{N}(mathbf{x}_n|mathbf{x}_n, sigma_j^2mathbf{I}) = frac{1}{(2pi)^{1/2}}frac{1}{sigma_j}
$$
I've tried to derive this myself:
$$
mathcal{N}(mathbf{x}_n|mathbf{x}_n, sigma_j^2mathbf{I}) = frac{1}{(2pi)^{d/2}|sigma_j^2mathbf{I}|^{1/2}}e^{(mathbf{x}_n-mathbf{x}_n)frac{1}{sigma_j^2}mathbf{I}(mathbf{x}_n - mathbf{x}_n)^T}
$$
$$
= frac{1}{(2pi)^{d/2}|sigma_j^2mathbf{I}|^{1/2}}e^{0}
$$
$$
= frac{1}{(2pi)^{d/2}(prod_{i=1}^{d}sigma_j^2)^{1/2}}
$$
$$
= frac{1}{(2pi)^{d/2}(sigma_j^{2d})^{1/2}}
$$
$$
= frac{1}{(2pi)^{d/2}sigma_j^{d}} = frac{1}{(2pi)^{d/2}}frac{1}{sigma_j^{d}}
$$
which gives a clearly different result. What does Bishop mean? It seems to me like the input dimensionality $d$ is not 1, in his equation, otherwise, why have a multivariate distribution? And if it's not d, how can (9.15) be true?
probability-theory probability-distributions
$endgroup$
add a comment |
$begingroup$
In PRML by C.M. Bishop, chapter 9, (9.15) is as follows:
$$
mathcal{N}(mathbf{x}_n|mathbf{x}_n, sigma_j^2mathbf{I}) = frac{1}{(2pi)^{1/2}}frac{1}{sigma_j}
$$
I've tried to derive this myself:
$$
mathcal{N}(mathbf{x}_n|mathbf{x}_n, sigma_j^2mathbf{I}) = frac{1}{(2pi)^{d/2}|sigma_j^2mathbf{I}|^{1/2}}e^{(mathbf{x}_n-mathbf{x}_n)frac{1}{sigma_j^2}mathbf{I}(mathbf{x}_n - mathbf{x}_n)^T}
$$
$$
= frac{1}{(2pi)^{d/2}|sigma_j^2mathbf{I}|^{1/2}}e^{0}
$$
$$
= frac{1}{(2pi)^{d/2}(prod_{i=1}^{d}sigma_j^2)^{1/2}}
$$
$$
= frac{1}{(2pi)^{d/2}(sigma_j^{2d})^{1/2}}
$$
$$
= frac{1}{(2pi)^{d/2}sigma_j^{d}} = frac{1}{(2pi)^{d/2}}frac{1}{sigma_j^{d}}
$$
which gives a clearly different result. What does Bishop mean? It seems to me like the input dimensionality $d$ is not 1, in his equation, otherwise, why have a multivariate distribution? And if it's not d, how can (9.15) be true?
probability-theory probability-distributions
$endgroup$
add a comment |
$begingroup$
In PRML by C.M. Bishop, chapter 9, (9.15) is as follows:
$$
mathcal{N}(mathbf{x}_n|mathbf{x}_n, sigma_j^2mathbf{I}) = frac{1}{(2pi)^{1/2}}frac{1}{sigma_j}
$$
I've tried to derive this myself:
$$
mathcal{N}(mathbf{x}_n|mathbf{x}_n, sigma_j^2mathbf{I}) = frac{1}{(2pi)^{d/2}|sigma_j^2mathbf{I}|^{1/2}}e^{(mathbf{x}_n-mathbf{x}_n)frac{1}{sigma_j^2}mathbf{I}(mathbf{x}_n - mathbf{x}_n)^T}
$$
$$
= frac{1}{(2pi)^{d/2}|sigma_j^2mathbf{I}|^{1/2}}e^{0}
$$
$$
= frac{1}{(2pi)^{d/2}(prod_{i=1}^{d}sigma_j^2)^{1/2}}
$$
$$
= frac{1}{(2pi)^{d/2}(sigma_j^{2d})^{1/2}}
$$
$$
= frac{1}{(2pi)^{d/2}sigma_j^{d}} = frac{1}{(2pi)^{d/2}}frac{1}{sigma_j^{d}}
$$
which gives a clearly different result. What does Bishop mean? It seems to me like the input dimensionality $d$ is not 1, in his equation, otherwise, why have a multivariate distribution? And if it's not d, how can (9.15) be true?
probability-theory probability-distributions
$endgroup$
In PRML by C.M. Bishop, chapter 9, (9.15) is as follows:
$$
mathcal{N}(mathbf{x}_n|mathbf{x}_n, sigma_j^2mathbf{I}) = frac{1}{(2pi)^{1/2}}frac{1}{sigma_j}
$$
I've tried to derive this myself:
$$
mathcal{N}(mathbf{x}_n|mathbf{x}_n, sigma_j^2mathbf{I}) = frac{1}{(2pi)^{d/2}|sigma_j^2mathbf{I}|^{1/2}}e^{(mathbf{x}_n-mathbf{x}_n)frac{1}{sigma_j^2}mathbf{I}(mathbf{x}_n - mathbf{x}_n)^T}
$$
$$
= frac{1}{(2pi)^{d/2}|sigma_j^2mathbf{I}|^{1/2}}e^{0}
$$
$$
= frac{1}{(2pi)^{d/2}(prod_{i=1}^{d}sigma_j^2)^{1/2}}
$$
$$
= frac{1}{(2pi)^{d/2}(sigma_j^{2d})^{1/2}}
$$
$$
= frac{1}{(2pi)^{d/2}sigma_j^{d}} = frac{1}{(2pi)^{d/2}}frac{1}{sigma_j^{d}}
$$
which gives a clearly different result. What does Bishop mean? It seems to me like the input dimensionality $d$ is not 1, in his equation, otherwise, why have a multivariate distribution? And if it's not d, how can (9.15) be true?
probability-theory probability-distributions
probability-theory probability-distributions
asked Dec 13 '18 at 14:31
SandiSandi
255112
255112
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
I agree with you.$$det(2pi sigma_j^2 I )^{-frac12}=(2pisigma_j^2)^{-frac{d}{2}}$$
Here is an errata of PRML, equation $(9.15)$ is one of them.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038075%2fderiving-eq-9-15-in-prml-by-cm-bishop%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
I agree with you.$$det(2pi sigma_j^2 I )^{-frac12}=(2pisigma_j^2)^{-frac{d}{2}}$$
Here is an errata of PRML, equation $(9.15)$ is one of them.
$endgroup$
add a comment |
$begingroup$
I agree with you.$$det(2pi sigma_j^2 I )^{-frac12}=(2pisigma_j^2)^{-frac{d}{2}}$$
Here is an errata of PRML, equation $(9.15)$ is one of them.
$endgroup$
add a comment |
$begingroup$
I agree with you.$$det(2pi sigma_j^2 I )^{-frac12}=(2pisigma_j^2)^{-frac{d}{2}}$$
Here is an errata of PRML, equation $(9.15)$ is one of them.
$endgroup$
I agree with you.$$det(2pi sigma_j^2 I )^{-frac12}=(2pisigma_j^2)^{-frac{d}{2}}$$
Here is an errata of PRML, equation $(9.15)$ is one of them.
answered Dec 13 '18 at 15:04
Siong Thye GohSiong Thye Goh
101k1466118
101k1466118
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038075%2fderiving-eq-9-15-in-prml-by-cm-bishop%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown