In R-Mod Category, example for $Bcong A oplus C nRightarrow 0 to A to B to C to0$ splits.
$begingroup$
https://en.wikipedia.org/wiki/Splitting_lemma
In $R$-Mod Category, short exact sequence
$0 to A stackrel{f}{rightarrow} B stackrel{g}{rightarrow} C to0$ splits
if it satisfies one of the following equivalent conditions:
$(1) exists f_1intext{Hom}(B,A)text{ s.t. } f_1circ f=text{Id}_A$.
$(2) exists g_1intext{Hom}(C,B)text{ s.t. } gcirc g_1=text{Id}_C$.
$(3) text{Im }f=text{Ker }g$ is direct summand of $B$.
$(4) exists text{ isomorphism } h:Bto A oplus C text{ s.t. } $
$h circ f text{ is natural injection and }g circ h^{-1} text{ is natural projection.}$
And
$0 to A stackrel{f}{rightarrow} B stackrel{g}{rightarrow} C to0$ splits $implies Bcong A oplus C$.
So what if we remove the condition:
$ text{isomorphism } h:Bto A oplus C text{ satisfying } $
$h circ f text{ is natural injection and }g circ h^{-1} text{ is natural projection?}$
Is there any counter example? Thanks in advance.
Related questions:
$(1)$ Example of a non-splitting exact sequence $0rightarrow Mrightarrow Moplus Nrightarrow Nrightarrow 0$, question
$(2)$ A nonsplit short exact sequence of abelian groups with $B cong A oplus C$
abstract-algebra modules
$endgroup$
add a comment |
$begingroup$
https://en.wikipedia.org/wiki/Splitting_lemma
In $R$-Mod Category, short exact sequence
$0 to A stackrel{f}{rightarrow} B stackrel{g}{rightarrow} C to0$ splits
if it satisfies one of the following equivalent conditions:
$(1) exists f_1intext{Hom}(B,A)text{ s.t. } f_1circ f=text{Id}_A$.
$(2) exists g_1intext{Hom}(C,B)text{ s.t. } gcirc g_1=text{Id}_C$.
$(3) text{Im }f=text{Ker }g$ is direct summand of $B$.
$(4) exists text{ isomorphism } h:Bto A oplus C text{ s.t. } $
$h circ f text{ is natural injection and }g circ h^{-1} text{ is natural projection.}$
And
$0 to A stackrel{f}{rightarrow} B stackrel{g}{rightarrow} C to0$ splits $implies Bcong A oplus C$.
So what if we remove the condition:
$ text{isomorphism } h:Bto A oplus C text{ satisfying } $
$h circ f text{ is natural injection and }g circ h^{-1} text{ is natural projection?}$
Is there any counter example? Thanks in advance.
Related questions:
$(1)$ Example of a non-splitting exact sequence $0rightarrow Mrightarrow Moplus Nrightarrow Nrightarrow 0$, question
$(2)$ A nonsplit short exact sequence of abelian groups with $B cong A oplus C$
abstract-algebra modules
$endgroup$
$begingroup$
You mean, there exists an isomorphism, but it just doesn't satisfy the injection/projection conditions?
$endgroup$
– rschwieb
Dec 13 '18 at 14:40
$begingroup$
Possible duplicate of A nonsplit short exact sequence of abelian groups with $B cong A oplus C$
$endgroup$
– yamete kudasai
Dec 13 '18 at 14:42
$begingroup$
What do you mean by "drop the condition"?
$endgroup$
– positrón0802
Dec 13 '18 at 14:57
add a comment |
$begingroup$
https://en.wikipedia.org/wiki/Splitting_lemma
In $R$-Mod Category, short exact sequence
$0 to A stackrel{f}{rightarrow} B stackrel{g}{rightarrow} C to0$ splits
if it satisfies one of the following equivalent conditions:
$(1) exists f_1intext{Hom}(B,A)text{ s.t. } f_1circ f=text{Id}_A$.
$(2) exists g_1intext{Hom}(C,B)text{ s.t. } gcirc g_1=text{Id}_C$.
$(3) text{Im }f=text{Ker }g$ is direct summand of $B$.
$(4) exists text{ isomorphism } h:Bto A oplus C text{ s.t. } $
$h circ f text{ is natural injection and }g circ h^{-1} text{ is natural projection.}$
And
$0 to A stackrel{f}{rightarrow} B stackrel{g}{rightarrow} C to0$ splits $implies Bcong A oplus C$.
So what if we remove the condition:
$ text{isomorphism } h:Bto A oplus C text{ satisfying } $
$h circ f text{ is natural injection and }g circ h^{-1} text{ is natural projection?}$
Is there any counter example? Thanks in advance.
Related questions:
$(1)$ Example of a non-splitting exact sequence $0rightarrow Mrightarrow Moplus Nrightarrow Nrightarrow 0$, question
$(2)$ A nonsplit short exact sequence of abelian groups with $B cong A oplus C$
abstract-algebra modules
$endgroup$
https://en.wikipedia.org/wiki/Splitting_lemma
In $R$-Mod Category, short exact sequence
$0 to A stackrel{f}{rightarrow} B stackrel{g}{rightarrow} C to0$ splits
if it satisfies one of the following equivalent conditions:
$(1) exists f_1intext{Hom}(B,A)text{ s.t. } f_1circ f=text{Id}_A$.
$(2) exists g_1intext{Hom}(C,B)text{ s.t. } gcirc g_1=text{Id}_C$.
$(3) text{Im }f=text{Ker }g$ is direct summand of $B$.
$(4) exists text{ isomorphism } h:Bto A oplus C text{ s.t. } $
$h circ f text{ is natural injection and }g circ h^{-1} text{ is natural projection.}$
And
$0 to A stackrel{f}{rightarrow} B stackrel{g}{rightarrow} C to0$ splits $implies Bcong A oplus C$.
So what if we remove the condition:
$ text{isomorphism } h:Bto A oplus C text{ satisfying } $
$h circ f text{ is natural injection and }g circ h^{-1} text{ is natural projection?}$
Is there any counter example? Thanks in advance.
Related questions:
$(1)$ Example of a non-splitting exact sequence $0rightarrow Mrightarrow Moplus Nrightarrow Nrightarrow 0$, question
$(2)$ A nonsplit short exact sequence of abelian groups with $B cong A oplus C$
abstract-algebra modules
abstract-algebra modules
edited Dec 26 '18 at 21:28
user26857
39.3k124183
39.3k124183
asked Dec 13 '18 at 14:30
AndrewsAndrews
4081317
4081317
$begingroup$
You mean, there exists an isomorphism, but it just doesn't satisfy the injection/projection conditions?
$endgroup$
– rschwieb
Dec 13 '18 at 14:40
$begingroup$
Possible duplicate of A nonsplit short exact sequence of abelian groups with $B cong A oplus C$
$endgroup$
– yamete kudasai
Dec 13 '18 at 14:42
$begingroup$
What do you mean by "drop the condition"?
$endgroup$
– positrón0802
Dec 13 '18 at 14:57
add a comment |
$begingroup$
You mean, there exists an isomorphism, but it just doesn't satisfy the injection/projection conditions?
$endgroup$
– rschwieb
Dec 13 '18 at 14:40
$begingroup$
Possible duplicate of A nonsplit short exact sequence of abelian groups with $B cong A oplus C$
$endgroup$
– yamete kudasai
Dec 13 '18 at 14:42
$begingroup$
What do you mean by "drop the condition"?
$endgroup$
– positrón0802
Dec 13 '18 at 14:57
$begingroup$
You mean, there exists an isomorphism, but it just doesn't satisfy the injection/projection conditions?
$endgroup$
– rschwieb
Dec 13 '18 at 14:40
$begingroup$
You mean, there exists an isomorphism, but it just doesn't satisfy the injection/projection conditions?
$endgroup$
– rschwieb
Dec 13 '18 at 14:40
$begingroup$
Possible duplicate of A nonsplit short exact sequence of abelian groups with $B cong A oplus C$
$endgroup$
– yamete kudasai
Dec 13 '18 at 14:42
$begingroup$
Possible duplicate of A nonsplit short exact sequence of abelian groups with $B cong A oplus C$
$endgroup$
– yamete kudasai
Dec 13 '18 at 14:42
$begingroup$
What do you mean by "drop the condition"?
$endgroup$
– positrón0802
Dec 13 '18 at 14:57
$begingroup$
What do you mean by "drop the condition"?
$endgroup$
– positrón0802
Dec 13 '18 at 14:57
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Here ring $R$ is communtative to make Hom$_R(C, - )$ a $R$-module.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038071%2fin-r-mod-category-example-for-b-cong-a-oplus-c-nrightarrow-0-to-a-to-b-to%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Here ring $R$ is communtative to make Hom$_R(C, - )$ a $R$-module.
$endgroup$
add a comment |
$begingroup$
Here ring $R$ is communtative to make Hom$_R(C, - )$ a $R$-module.
$endgroup$
add a comment |
$begingroup$
Here ring $R$ is communtative to make Hom$_R(C, - )$ a $R$-module.
$endgroup$
Here ring $R$ is communtative to make Hom$_R(C, - )$ a $R$-module.
answered Dec 13 '18 at 23:50
AndrewsAndrews
4081317
4081317
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038071%2fin-r-mod-category-example-for-b-cong-a-oplus-c-nrightarrow-0-to-a-to-b-to%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
You mean, there exists an isomorphism, but it just doesn't satisfy the injection/projection conditions?
$endgroup$
– rschwieb
Dec 13 '18 at 14:40
$begingroup$
Possible duplicate of A nonsplit short exact sequence of abelian groups with $B cong A oplus C$
$endgroup$
– yamete kudasai
Dec 13 '18 at 14:42
$begingroup$
What do you mean by "drop the condition"?
$endgroup$
– positrón0802
Dec 13 '18 at 14:57