Sum of list numbers smaller than one goal
$begingroup$
I have five values that I would like to add them so that they can be equal to or less than 3000.
v1 = 140; v2 = 280; v3 = 420; v4 = 560; v5 = 700; goal = 3000;
Subsets [{v1, v2, v3, v4, v5}]
For example:
v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1
-> 2940
v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v2
-> 2940
v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v3
-> 2940
v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v4
-> 2940
v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v5
-> 2940
v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v2 + v2
-> 2940
v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v2 + v2 + v2
-> 2940
All are possibilities, among other possibilities.
Is there a feature that validates these possibilities?
combinatorics
$endgroup$
add a comment |
$begingroup$
I have five values that I would like to add them so that they can be equal to or less than 3000.
v1 = 140; v2 = 280; v3 = 420; v4 = 560; v5 = 700; goal = 3000;
Subsets [{v1, v2, v3, v4, v5}]
For example:
v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1
-> 2940
v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v2
-> 2940
v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v3
-> 2940
v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v4
-> 2940
v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v5
-> 2940
v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v2 + v2
-> 2940
v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v2 + v2 + v2
-> 2940
All are possibilities, among other possibilities.
Is there a feature that validates these possibilities?
combinatorics
$endgroup$
add a comment |
$begingroup$
I have five values that I would like to add them so that they can be equal to or less than 3000.
v1 = 140; v2 = 280; v3 = 420; v4 = 560; v5 = 700; goal = 3000;
Subsets [{v1, v2, v3, v4, v5}]
For example:
v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1
-> 2940
v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v2
-> 2940
v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v3
-> 2940
v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v4
-> 2940
v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v5
-> 2940
v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v2 + v2
-> 2940
v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v2 + v2 + v2
-> 2940
All are possibilities, among other possibilities.
Is there a feature that validates these possibilities?
combinatorics
$endgroup$
I have five values that I would like to add them so that they can be equal to or less than 3000.
v1 = 140; v2 = 280; v3 = 420; v4 = 560; v5 = 700; goal = 3000;
Subsets [{v1, v2, v3, v4, v5}]
For example:
v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1
-> 2940
v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v2
-> 2940
v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v3
-> 2940
v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v4
-> 2940
v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v5
-> 2940
v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v2 + v2
-> 2940
v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v1 + v2 + v2 + v2
-> 2940
All are possibilities, among other possibilities.
Is there a feature that validates these possibilities?
combinatorics
combinatorics
edited Jan 21 at 19:18
LCarvalho
asked Jan 21 at 18:15
LCarvalhoLCarvalho
5,68142886
5,68142886
add a comment |
add a comment |
5 Answers
5
active
oldest
votes
$begingroup$
Append 1
to the list of v
s and use FrobeniusSolve
:
w = {v1, v2, v3, v4, v5, 1};
res = FrobeniusSolve[w, 3000][[2;;, ;; 5]];
Length[res]
1345
Short @ res
{{0,0,0,0,1},{0,0,0,0,2},{0,0,0,0,3},{0,0,0,0,4},{0,0,0,1,0},<<1336>>,{19,0,0,0,0},{19,1,0,0,0},{20,0,0,0,0},{21,0,0,0,0}}
And @@ Thread[Total /@ res <= 3000]
True
Up to ordering, res
is the same as Henrik's resulttable
:
Sort[res] == Sort[resulttable]
True
An alternative way to use IntegerPartitions
using w
:
res2 = DeleteCases[Rest@IntegerPartitions[3000, All, w], 1, 2];
Length@res2
1345
restab = Map[Lookup[Counts[#], Most @ w, 0] &] @ res2;
Sort[res] == Sort[restab]
True
To get the totals that can be obtained using v
s:
Sort[DeleteDuplicates[res.Most[w]]] (* or *)
Sort[3000 - DeleteDuplicates@Rest[FrobeniusSolve[w, 3000]][[All, -1]]]
{140, 280, 420, 560, 700, 840, 980, 1120, 1260, 1400, 1540, 1680,
1820, 1960, 2100, 2240, 2380, 2520, 2660, 2800, 2940}
Sort @ Counts[res.Most[w]]
<|140 -> 1, 280 -> 2, 420 -> 3, 560 -> 5, 700 -> 7, 840 -> 10,
980 -> 13, 1120 -> 18, 1260 -> 23, 1400 -> 30, 1540 -> 37,
1680 -> 47, 1820 -> 57, 1960 -> 70, 2100 -> 84, 2240 -> 101,
2380 -> 119, 2520 -> 141, 2660 -> 164, 2800 -> 192, 2940 -> 221|>
Update: You can also use Reduce
and Solve
:
v = {v1, v2, v3, v4, v5};
xv = Array[x, 5];
resReduce = Reduce[{v.xv <= 3000, ##&@@Thread[xv >= 0]}, xv, Integers][[2;;, All, -1]] /.
{And | Or -> List};
resSolve = xv /. Rest@Solve[{v.xv <= 3000, ## & @@ Thread[xv >= 0]}, xv, Integers];
res == resReduce == resSolve
True
$endgroup$
add a comment |
$begingroup$
a = {140, 280, 420, 560, 700};
results = Join @@ DeleteCases[
IntegerPartitions[#, {1, ∞}, a] & /@ Range[3000],
{}
];
And @@ Thread[Total /@ results <= 3000]
resulttable = Map[Lookup[Counts[#], a, 0] &, results];
resulttable // Short
True
{{1, 0, 0, 0, 0}, {0, 1, 0, 0, 0}, <<1341>> , {19, 1, 0, 0, 0}, {21, 0, 0, 0, 0}}
$endgroup$
add a comment |
$begingroup$
v1 = 140; v2 = 280; v3 = 420; v4 = 560; v5 = 700; goal = 3000;
Select[Subsets[{v1, v2, v3, v4, v5}], Total[#] <= goal &]
Are you sure your "goal" is 3000? Every subset totals less than that.
And what does 21 * v1
in your question refer to? What is $21$, and why multiplication?
$endgroup$
add a comment |
$begingroup$
a = {140, 280, 420, 560, 700};
coef = Tuples[Range[0, 21], 5];
vec = coef.a;
Extract[coef, Position[Ramp[vec - 3000], 0]] // Short
{{0,0,0,0,0},{0,0,0,0,1},{0,0,0,0,2},{0,0,0,0,3},{0,0,0,0,4},{0,0,0,1,0},<<1335>>,{18,1,0,0,0},{19,0,0,0,0},{19,1,0,0,0},{20,0,0,0,0},{21,0,0,0,0}}
Pick[vec, Ramp[vec - 3000], 0] // Short
{0,700,1400,2100,2800,560,1260,1960,2660,1120,1820,2520,1680,2380,<<1318>>,2940,2800,2380,2940,2800,2660,2940,2520,2940,2800,2660,2940,2800,2940}
$endgroup$
add a comment |
$begingroup$
Could use integer linear programming via Maximize
, for example. The constraint I use is overkill, all we really need to enforce is that values be nonnegative.
vals = {140, 280, 420, 560, 700};
goal = 3000;
vars = Array[v, Length[vals]];
Maximize[{vars.vals,
Flatten[{vars.vals <= goal,
MapIndexed[0 <= # <= Floor[goal/vals[[#2[[1]]]]] &,
vars]}]}, vars, Integers]
(* Out[1287]= {2940, {v[1] -> 10, v[2] -> 4, v[3] -> 1,
v[4] -> 0, v[5] -> 0}} *)
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "387"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f189957%2fsum-of-list-numbers-smaller-than-one-goal%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
5 Answers
5
active
oldest
votes
5 Answers
5
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Append 1
to the list of v
s and use FrobeniusSolve
:
w = {v1, v2, v3, v4, v5, 1};
res = FrobeniusSolve[w, 3000][[2;;, ;; 5]];
Length[res]
1345
Short @ res
{{0,0,0,0,1},{0,0,0,0,2},{0,0,0,0,3},{0,0,0,0,4},{0,0,0,1,0},<<1336>>,{19,0,0,0,0},{19,1,0,0,0},{20,0,0,0,0},{21,0,0,0,0}}
And @@ Thread[Total /@ res <= 3000]
True
Up to ordering, res
is the same as Henrik's resulttable
:
Sort[res] == Sort[resulttable]
True
An alternative way to use IntegerPartitions
using w
:
res2 = DeleteCases[Rest@IntegerPartitions[3000, All, w], 1, 2];
Length@res2
1345
restab = Map[Lookup[Counts[#], Most @ w, 0] &] @ res2;
Sort[res] == Sort[restab]
True
To get the totals that can be obtained using v
s:
Sort[DeleteDuplicates[res.Most[w]]] (* or *)
Sort[3000 - DeleteDuplicates@Rest[FrobeniusSolve[w, 3000]][[All, -1]]]
{140, 280, 420, 560, 700, 840, 980, 1120, 1260, 1400, 1540, 1680,
1820, 1960, 2100, 2240, 2380, 2520, 2660, 2800, 2940}
Sort @ Counts[res.Most[w]]
<|140 -> 1, 280 -> 2, 420 -> 3, 560 -> 5, 700 -> 7, 840 -> 10,
980 -> 13, 1120 -> 18, 1260 -> 23, 1400 -> 30, 1540 -> 37,
1680 -> 47, 1820 -> 57, 1960 -> 70, 2100 -> 84, 2240 -> 101,
2380 -> 119, 2520 -> 141, 2660 -> 164, 2800 -> 192, 2940 -> 221|>
Update: You can also use Reduce
and Solve
:
v = {v1, v2, v3, v4, v5};
xv = Array[x, 5];
resReduce = Reduce[{v.xv <= 3000, ##&@@Thread[xv >= 0]}, xv, Integers][[2;;, All, -1]] /.
{And | Or -> List};
resSolve = xv /. Rest@Solve[{v.xv <= 3000, ## & @@ Thread[xv >= 0]}, xv, Integers];
res == resReduce == resSolve
True
$endgroup$
add a comment |
$begingroup$
Append 1
to the list of v
s and use FrobeniusSolve
:
w = {v1, v2, v3, v4, v5, 1};
res = FrobeniusSolve[w, 3000][[2;;, ;; 5]];
Length[res]
1345
Short @ res
{{0,0,0,0,1},{0,0,0,0,2},{0,0,0,0,3},{0,0,0,0,4},{0,0,0,1,0},<<1336>>,{19,0,0,0,0},{19,1,0,0,0},{20,0,0,0,0},{21,0,0,0,0}}
And @@ Thread[Total /@ res <= 3000]
True
Up to ordering, res
is the same as Henrik's resulttable
:
Sort[res] == Sort[resulttable]
True
An alternative way to use IntegerPartitions
using w
:
res2 = DeleteCases[Rest@IntegerPartitions[3000, All, w], 1, 2];
Length@res2
1345
restab = Map[Lookup[Counts[#], Most @ w, 0] &] @ res2;
Sort[res] == Sort[restab]
True
To get the totals that can be obtained using v
s:
Sort[DeleteDuplicates[res.Most[w]]] (* or *)
Sort[3000 - DeleteDuplicates@Rest[FrobeniusSolve[w, 3000]][[All, -1]]]
{140, 280, 420, 560, 700, 840, 980, 1120, 1260, 1400, 1540, 1680,
1820, 1960, 2100, 2240, 2380, 2520, 2660, 2800, 2940}
Sort @ Counts[res.Most[w]]
<|140 -> 1, 280 -> 2, 420 -> 3, 560 -> 5, 700 -> 7, 840 -> 10,
980 -> 13, 1120 -> 18, 1260 -> 23, 1400 -> 30, 1540 -> 37,
1680 -> 47, 1820 -> 57, 1960 -> 70, 2100 -> 84, 2240 -> 101,
2380 -> 119, 2520 -> 141, 2660 -> 164, 2800 -> 192, 2940 -> 221|>
Update: You can also use Reduce
and Solve
:
v = {v1, v2, v3, v4, v5};
xv = Array[x, 5];
resReduce = Reduce[{v.xv <= 3000, ##&@@Thread[xv >= 0]}, xv, Integers][[2;;, All, -1]] /.
{And | Or -> List};
resSolve = xv /. Rest@Solve[{v.xv <= 3000, ## & @@ Thread[xv >= 0]}, xv, Integers];
res == resReduce == resSolve
True
$endgroup$
add a comment |
$begingroup$
Append 1
to the list of v
s and use FrobeniusSolve
:
w = {v1, v2, v3, v4, v5, 1};
res = FrobeniusSolve[w, 3000][[2;;, ;; 5]];
Length[res]
1345
Short @ res
{{0,0,0,0,1},{0,0,0,0,2},{0,0,0,0,3},{0,0,0,0,4},{0,0,0,1,0},<<1336>>,{19,0,0,0,0},{19,1,0,0,0},{20,0,0,0,0},{21,0,0,0,0}}
And @@ Thread[Total /@ res <= 3000]
True
Up to ordering, res
is the same as Henrik's resulttable
:
Sort[res] == Sort[resulttable]
True
An alternative way to use IntegerPartitions
using w
:
res2 = DeleteCases[Rest@IntegerPartitions[3000, All, w], 1, 2];
Length@res2
1345
restab = Map[Lookup[Counts[#], Most @ w, 0] &] @ res2;
Sort[res] == Sort[restab]
True
To get the totals that can be obtained using v
s:
Sort[DeleteDuplicates[res.Most[w]]] (* or *)
Sort[3000 - DeleteDuplicates@Rest[FrobeniusSolve[w, 3000]][[All, -1]]]
{140, 280, 420, 560, 700, 840, 980, 1120, 1260, 1400, 1540, 1680,
1820, 1960, 2100, 2240, 2380, 2520, 2660, 2800, 2940}
Sort @ Counts[res.Most[w]]
<|140 -> 1, 280 -> 2, 420 -> 3, 560 -> 5, 700 -> 7, 840 -> 10,
980 -> 13, 1120 -> 18, 1260 -> 23, 1400 -> 30, 1540 -> 37,
1680 -> 47, 1820 -> 57, 1960 -> 70, 2100 -> 84, 2240 -> 101,
2380 -> 119, 2520 -> 141, 2660 -> 164, 2800 -> 192, 2940 -> 221|>
Update: You can also use Reduce
and Solve
:
v = {v1, v2, v3, v4, v5};
xv = Array[x, 5];
resReduce = Reduce[{v.xv <= 3000, ##&@@Thread[xv >= 0]}, xv, Integers][[2;;, All, -1]] /.
{And | Or -> List};
resSolve = xv /. Rest@Solve[{v.xv <= 3000, ## & @@ Thread[xv >= 0]}, xv, Integers];
res == resReduce == resSolve
True
$endgroup$
Append 1
to the list of v
s and use FrobeniusSolve
:
w = {v1, v2, v3, v4, v5, 1};
res = FrobeniusSolve[w, 3000][[2;;, ;; 5]];
Length[res]
1345
Short @ res
{{0,0,0,0,1},{0,0,0,0,2},{0,0,0,0,3},{0,0,0,0,4},{0,0,0,1,0},<<1336>>,{19,0,0,0,0},{19,1,0,0,0},{20,0,0,0,0},{21,0,0,0,0}}
And @@ Thread[Total /@ res <= 3000]
True
Up to ordering, res
is the same as Henrik's resulttable
:
Sort[res] == Sort[resulttable]
True
An alternative way to use IntegerPartitions
using w
:
res2 = DeleteCases[Rest@IntegerPartitions[3000, All, w], 1, 2];
Length@res2
1345
restab = Map[Lookup[Counts[#], Most @ w, 0] &] @ res2;
Sort[res] == Sort[restab]
True
To get the totals that can be obtained using v
s:
Sort[DeleteDuplicates[res.Most[w]]] (* or *)
Sort[3000 - DeleteDuplicates@Rest[FrobeniusSolve[w, 3000]][[All, -1]]]
{140, 280, 420, 560, 700, 840, 980, 1120, 1260, 1400, 1540, 1680,
1820, 1960, 2100, 2240, 2380, 2520, 2660, 2800, 2940}
Sort @ Counts[res.Most[w]]
<|140 -> 1, 280 -> 2, 420 -> 3, 560 -> 5, 700 -> 7, 840 -> 10,
980 -> 13, 1120 -> 18, 1260 -> 23, 1400 -> 30, 1540 -> 37,
1680 -> 47, 1820 -> 57, 1960 -> 70, 2100 -> 84, 2240 -> 101,
2380 -> 119, 2520 -> 141, 2660 -> 164, 2800 -> 192, 2940 -> 221|>
Update: You can also use Reduce
and Solve
:
v = {v1, v2, v3, v4, v5};
xv = Array[x, 5];
resReduce = Reduce[{v.xv <= 3000, ##&@@Thread[xv >= 0]}, xv, Integers][[2;;, All, -1]] /.
{And | Or -> List};
resSolve = xv /. Rest@Solve[{v.xv <= 3000, ## & @@ Thread[xv >= 0]}, xv, Integers];
res == resReduce == resSolve
True
edited Jan 22 at 14:35
answered Jan 21 at 19:34
kglrkglr
183k10201416
183k10201416
add a comment |
add a comment |
$begingroup$
a = {140, 280, 420, 560, 700};
results = Join @@ DeleteCases[
IntegerPartitions[#, {1, ∞}, a] & /@ Range[3000],
{}
];
And @@ Thread[Total /@ results <= 3000]
resulttable = Map[Lookup[Counts[#], a, 0] &, results];
resulttable // Short
True
{{1, 0, 0, 0, 0}, {0, 1, 0, 0, 0}, <<1341>> , {19, 1, 0, 0, 0}, {21, 0, 0, 0, 0}}
$endgroup$
add a comment |
$begingroup$
a = {140, 280, 420, 560, 700};
results = Join @@ DeleteCases[
IntegerPartitions[#, {1, ∞}, a] & /@ Range[3000],
{}
];
And @@ Thread[Total /@ results <= 3000]
resulttable = Map[Lookup[Counts[#], a, 0] &, results];
resulttable // Short
True
{{1, 0, 0, 0, 0}, {0, 1, 0, 0, 0}, <<1341>> , {19, 1, 0, 0, 0}, {21, 0, 0, 0, 0}}
$endgroup$
add a comment |
$begingroup$
a = {140, 280, 420, 560, 700};
results = Join @@ DeleteCases[
IntegerPartitions[#, {1, ∞}, a] & /@ Range[3000],
{}
];
And @@ Thread[Total /@ results <= 3000]
resulttable = Map[Lookup[Counts[#], a, 0] &, results];
resulttable // Short
True
{{1, 0, 0, 0, 0}, {0, 1, 0, 0, 0}, <<1341>> , {19, 1, 0, 0, 0}, {21, 0, 0, 0, 0}}
$endgroup$
a = {140, 280, 420, 560, 700};
results = Join @@ DeleteCases[
IntegerPartitions[#, {1, ∞}, a] & /@ Range[3000],
{}
];
And @@ Thread[Total /@ results <= 3000]
resulttable = Map[Lookup[Counts[#], a, 0] &, results];
resulttable // Short
True
{{1, 0, 0, 0, 0}, {0, 1, 0, 0, 0}, <<1341>> , {19, 1, 0, 0, 0}, {21, 0, 0, 0, 0}}
edited Jan 21 at 19:09
answered Jan 21 at 18:41
Henrik SchumacherHenrik Schumacher
52.9k471148
52.9k471148
add a comment |
add a comment |
$begingroup$
v1 = 140; v2 = 280; v3 = 420; v4 = 560; v5 = 700; goal = 3000;
Select[Subsets[{v1, v2, v3, v4, v5}], Total[#] <= goal &]
Are you sure your "goal" is 3000? Every subset totals less than that.
And what does 21 * v1
in your question refer to? What is $21$, and why multiplication?
$endgroup$
add a comment |
$begingroup$
v1 = 140; v2 = 280; v3 = 420; v4 = 560; v5 = 700; goal = 3000;
Select[Subsets[{v1, v2, v3, v4, v5}], Total[#] <= goal &]
Are you sure your "goal" is 3000? Every subset totals less than that.
And what does 21 * v1
in your question refer to? What is $21$, and why multiplication?
$endgroup$
add a comment |
$begingroup$
v1 = 140; v2 = 280; v3 = 420; v4 = 560; v5 = 700; goal = 3000;
Select[Subsets[{v1, v2, v3, v4, v5}], Total[#] <= goal &]
Are you sure your "goal" is 3000? Every subset totals less than that.
And what does 21 * v1
in your question refer to? What is $21$, and why multiplication?
$endgroup$
v1 = 140; v2 = 280; v3 = 420; v4 = 560; v5 = 700; goal = 3000;
Select[Subsets[{v1, v2, v3, v4, v5}], Total[#] <= goal &]
Are you sure your "goal" is 3000? Every subset totals less than that.
And what does 21 * v1
in your question refer to? What is $21$, and why multiplication?
answered Jan 21 at 18:38
David G. StorkDavid G. Stork
24.4k22153
24.4k22153
add a comment |
add a comment |
$begingroup$
a = {140, 280, 420, 560, 700};
coef = Tuples[Range[0, 21], 5];
vec = coef.a;
Extract[coef, Position[Ramp[vec - 3000], 0]] // Short
{{0,0,0,0,0},{0,0,0,0,1},{0,0,0,0,2},{0,0,0,0,3},{0,0,0,0,4},{0,0,0,1,0},<<1335>>,{18,1,0,0,0},{19,0,0,0,0},{19,1,0,0,0},{20,0,0,0,0},{21,0,0,0,0}}
Pick[vec, Ramp[vec - 3000], 0] // Short
{0,700,1400,2100,2800,560,1260,1960,2660,1120,1820,2520,1680,2380,<<1318>>,2940,2800,2380,2940,2800,2660,2940,2520,2940,2800,2660,2940,2800,2940}
$endgroup$
add a comment |
$begingroup$
a = {140, 280, 420, 560, 700};
coef = Tuples[Range[0, 21], 5];
vec = coef.a;
Extract[coef, Position[Ramp[vec - 3000], 0]] // Short
{{0,0,0,0,0},{0,0,0,0,1},{0,0,0,0,2},{0,0,0,0,3},{0,0,0,0,4},{0,0,0,1,0},<<1335>>,{18,1,0,0,0},{19,0,0,0,0},{19,1,0,0,0},{20,0,0,0,0},{21,0,0,0,0}}
Pick[vec, Ramp[vec - 3000], 0] // Short
{0,700,1400,2100,2800,560,1260,1960,2660,1120,1820,2520,1680,2380,<<1318>>,2940,2800,2380,2940,2800,2660,2940,2520,2940,2800,2660,2940,2800,2940}
$endgroup$
add a comment |
$begingroup$
a = {140, 280, 420, 560, 700};
coef = Tuples[Range[0, 21], 5];
vec = coef.a;
Extract[coef, Position[Ramp[vec - 3000], 0]] // Short
{{0,0,0,0,0},{0,0,0,0,1},{0,0,0,0,2},{0,0,0,0,3},{0,0,0,0,4},{0,0,0,1,0},<<1335>>,{18,1,0,0,0},{19,0,0,0,0},{19,1,0,0,0},{20,0,0,0,0},{21,0,0,0,0}}
Pick[vec, Ramp[vec - 3000], 0] // Short
{0,700,1400,2100,2800,560,1260,1960,2660,1120,1820,2520,1680,2380,<<1318>>,2940,2800,2380,2940,2800,2660,2940,2520,2940,2800,2660,2940,2800,2940}
$endgroup$
a = {140, 280, 420, 560, 700};
coef = Tuples[Range[0, 21], 5];
vec = coef.a;
Extract[coef, Position[Ramp[vec - 3000], 0]] // Short
{{0,0,0,0,0},{0,0,0,0,1},{0,0,0,0,2},{0,0,0,0,3},{0,0,0,0,4},{0,0,0,1,0},<<1335>>,{18,1,0,0,0},{19,0,0,0,0},{19,1,0,0,0},{20,0,0,0,0},{21,0,0,0,0}}
Pick[vec, Ramp[vec - 3000], 0] // Short
{0,700,1400,2100,2800,560,1260,1960,2660,1120,1820,2520,1680,2380,<<1318>>,2940,2800,2380,2940,2800,2660,2940,2520,2940,2800,2660,2940,2800,2940}
answered Jan 21 at 19:45
Okkes DulgerciOkkes Dulgerci
4,9521817
4,9521817
add a comment |
add a comment |
$begingroup$
Could use integer linear programming via Maximize
, for example. The constraint I use is overkill, all we really need to enforce is that values be nonnegative.
vals = {140, 280, 420, 560, 700};
goal = 3000;
vars = Array[v, Length[vals]];
Maximize[{vars.vals,
Flatten[{vars.vals <= goal,
MapIndexed[0 <= # <= Floor[goal/vals[[#2[[1]]]]] &,
vars]}]}, vars, Integers]
(* Out[1287]= {2940, {v[1] -> 10, v[2] -> 4, v[3] -> 1,
v[4] -> 0, v[5] -> 0}} *)
$endgroup$
add a comment |
$begingroup$
Could use integer linear programming via Maximize
, for example. The constraint I use is overkill, all we really need to enforce is that values be nonnegative.
vals = {140, 280, 420, 560, 700};
goal = 3000;
vars = Array[v, Length[vals]];
Maximize[{vars.vals,
Flatten[{vars.vals <= goal,
MapIndexed[0 <= # <= Floor[goal/vals[[#2[[1]]]]] &,
vars]}]}, vars, Integers]
(* Out[1287]= {2940, {v[1] -> 10, v[2] -> 4, v[3] -> 1,
v[4] -> 0, v[5] -> 0}} *)
$endgroup$
add a comment |
$begingroup$
Could use integer linear programming via Maximize
, for example. The constraint I use is overkill, all we really need to enforce is that values be nonnegative.
vals = {140, 280, 420, 560, 700};
goal = 3000;
vars = Array[v, Length[vals]];
Maximize[{vars.vals,
Flatten[{vars.vals <= goal,
MapIndexed[0 <= # <= Floor[goal/vals[[#2[[1]]]]] &,
vars]}]}, vars, Integers]
(* Out[1287]= {2940, {v[1] -> 10, v[2] -> 4, v[3] -> 1,
v[4] -> 0, v[5] -> 0}} *)
$endgroup$
Could use integer linear programming via Maximize
, for example. The constraint I use is overkill, all we really need to enforce is that values be nonnegative.
vals = {140, 280, 420, 560, 700};
goal = 3000;
vars = Array[v, Length[vals]];
Maximize[{vars.vals,
Flatten[{vars.vals <= goal,
MapIndexed[0 <= # <= Floor[goal/vals[[#2[[1]]]]] &,
vars]}]}, vars, Integers]
(* Out[1287]= {2940, {v[1] -> 10, v[2] -> 4, v[3] -> 1,
v[4] -> 0, v[5] -> 0}} *)
answered Jan 22 at 15:42
Daniel LichtblauDaniel Lichtblau
46.9k276163
46.9k276163
add a comment |
add a comment |
Thanks for contributing an answer to Mathematica Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f189957%2fsum-of-list-numbers-smaller-than-one-goal%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown