Is the following statement is True/false ? ..
$begingroup$
Is the following statement is True/false ?
Given that $f_n(x) =(-x)^n $ , $x in [0,1] $ then $f_n$ converges pointwise everywhere ?
i thinks it will be true same as $f(x) = 0 $ when x =0 ,$f(x) =1$ when
$0 <x le 1$
Am i right ??
real-analysis
$endgroup$
add a comment |
$begingroup$
Is the following statement is True/false ?
Given that $f_n(x) =(-x)^n $ , $x in [0,1] $ then $f_n$ converges pointwise everywhere ?
i thinks it will be true same as $f(x) = 0 $ when x =0 ,$f(x) =1$ when
$0 <x le 1$
Am i right ??
real-analysis
$endgroup$
add a comment |
$begingroup$
Is the following statement is True/false ?
Given that $f_n(x) =(-x)^n $ , $x in [0,1] $ then $f_n$ converges pointwise everywhere ?
i thinks it will be true same as $f(x) = 0 $ when x =0 ,$f(x) =1$ when
$0 <x le 1$
Am i right ??
real-analysis
$endgroup$
Is the following statement is True/false ?
Given that $f_n(x) =(-x)^n $ , $x in [0,1] $ then $f_n$ converges pointwise everywhere ?
i thinks it will be true same as $f(x) = 0 $ when x =0 ,$f(x) =1$ when
$0 <x le 1$
Am i right ??
real-analysis
real-analysis
asked Dec 12 '18 at 13:00
jasminejasmine
1,747417
1,747417
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
You are not correct. If you define $$f(x)=begin{cases}0&xin[0,1)\1&x=1end{cases}$$
then $f_n$ converges to $f$ pointwise on $[0,1)$, however, for $x=1$, the sequence $f_n(x)$ becomes $(-1)^n$ which is the sequence $1,-1,1,-1,dots$, a sequence that does not converge.
$endgroup$
$begingroup$
@%xum but im confusing at negative sign $(-x)^n = x^n$
$endgroup$
– jasmine
Dec 12 '18 at 13:06
1
$begingroup$
@jasmine Oh, I missed the negative sign! Sorry, I will edit my answer.
$endgroup$
– 5xum
Dec 12 '18 at 13:07
add a comment |
$begingroup$
This is correct except for when $x=1$. When $x=1$ you get a sequence $f_n = (-1)^n$ which does not converge, and therefore does not converge pointwise at that point.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3036657%2fis-the-following-statement-is-true-false%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You are not correct. If you define $$f(x)=begin{cases}0&xin[0,1)\1&x=1end{cases}$$
then $f_n$ converges to $f$ pointwise on $[0,1)$, however, for $x=1$, the sequence $f_n(x)$ becomes $(-1)^n$ which is the sequence $1,-1,1,-1,dots$, a sequence that does not converge.
$endgroup$
$begingroup$
@%xum but im confusing at negative sign $(-x)^n = x^n$
$endgroup$
– jasmine
Dec 12 '18 at 13:06
1
$begingroup$
@jasmine Oh, I missed the negative sign! Sorry, I will edit my answer.
$endgroup$
– 5xum
Dec 12 '18 at 13:07
add a comment |
$begingroup$
You are not correct. If you define $$f(x)=begin{cases}0&xin[0,1)\1&x=1end{cases}$$
then $f_n$ converges to $f$ pointwise on $[0,1)$, however, for $x=1$, the sequence $f_n(x)$ becomes $(-1)^n$ which is the sequence $1,-1,1,-1,dots$, a sequence that does not converge.
$endgroup$
$begingroup$
@%xum but im confusing at negative sign $(-x)^n = x^n$
$endgroup$
– jasmine
Dec 12 '18 at 13:06
1
$begingroup$
@jasmine Oh, I missed the negative sign! Sorry, I will edit my answer.
$endgroup$
– 5xum
Dec 12 '18 at 13:07
add a comment |
$begingroup$
You are not correct. If you define $$f(x)=begin{cases}0&xin[0,1)\1&x=1end{cases}$$
then $f_n$ converges to $f$ pointwise on $[0,1)$, however, for $x=1$, the sequence $f_n(x)$ becomes $(-1)^n$ which is the sequence $1,-1,1,-1,dots$, a sequence that does not converge.
$endgroup$
You are not correct. If you define $$f(x)=begin{cases}0&xin[0,1)\1&x=1end{cases}$$
then $f_n$ converges to $f$ pointwise on $[0,1)$, however, for $x=1$, the sequence $f_n(x)$ becomes $(-1)^n$ which is the sequence $1,-1,1,-1,dots$, a sequence that does not converge.
edited Dec 12 '18 at 13:08
answered Dec 12 '18 at 13:04
5xum5xum
90.6k394161
90.6k394161
$begingroup$
@%xum but im confusing at negative sign $(-x)^n = x^n$
$endgroup$
– jasmine
Dec 12 '18 at 13:06
1
$begingroup$
@jasmine Oh, I missed the negative sign! Sorry, I will edit my answer.
$endgroup$
– 5xum
Dec 12 '18 at 13:07
add a comment |
$begingroup$
@%xum but im confusing at negative sign $(-x)^n = x^n$
$endgroup$
– jasmine
Dec 12 '18 at 13:06
1
$begingroup$
@jasmine Oh, I missed the negative sign! Sorry, I will edit my answer.
$endgroup$
– 5xum
Dec 12 '18 at 13:07
$begingroup$
@%xum but im confusing at negative sign $(-x)^n = x^n$
$endgroup$
– jasmine
Dec 12 '18 at 13:06
$begingroup$
@%xum but im confusing at negative sign $(-x)^n = x^n$
$endgroup$
– jasmine
Dec 12 '18 at 13:06
1
1
$begingroup$
@jasmine Oh, I missed the negative sign! Sorry, I will edit my answer.
$endgroup$
– 5xum
Dec 12 '18 at 13:07
$begingroup$
@jasmine Oh, I missed the negative sign! Sorry, I will edit my answer.
$endgroup$
– 5xum
Dec 12 '18 at 13:07
add a comment |
$begingroup$
This is correct except for when $x=1$. When $x=1$ you get a sequence $f_n = (-1)^n$ which does not converge, and therefore does not converge pointwise at that point.
$endgroup$
add a comment |
$begingroup$
This is correct except for when $x=1$. When $x=1$ you get a sequence $f_n = (-1)^n$ which does not converge, and therefore does not converge pointwise at that point.
$endgroup$
add a comment |
$begingroup$
This is correct except for when $x=1$. When $x=1$ you get a sequence $f_n = (-1)^n$ which does not converge, and therefore does not converge pointwise at that point.
$endgroup$
This is correct except for when $x=1$. When $x=1$ you get a sequence $f_n = (-1)^n$ which does not converge, and therefore does not converge pointwise at that point.
answered Dec 12 '18 at 13:08
dllegenddllegend
163
163
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3036657%2fis-the-following-statement-is-true-false%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown