Limits of a multiple integral function
$begingroup$
Problem
Let $f(x)in L^{1}(mathbb{R}^N)cap L^{infty}(mathbb{R}^N)$ and $S_t=left{xinmathbb{R}^N: |x_1|le tright}$ with $t>0$. Let $phi(t)$ the integral function $$phi(t)=int_{mathbb{R}^Nsetminus S_t}|f(x)|^2dx$$
Find $$lim_{tto 0^{+}}phi(t) mbox{and} lim_{tto +infty}phi(t)$$
My approach
Since $f(x)in L^{1}(mathbb{R}^{N})cap L^{infty}(mathbb{R}^N)$ then $f(x)in L^{2}(mathbb{R}^{N})$.
Infact, by definition of integral
$$phi(t)=int_{mathbb{R}^Nsetminus S_t}|f(x)|^2dx=int_{mathbb{R}^{N}}chi_{mathbb{R}^Nsetminus S_{t}}(x)|f(x)|^2dxle\ \ le int_{mathbb{R}^{N}}|f(x)|^2dxle |f|_{infty}int_{mathbb{R}^{N}}|f(x)|dx=|f|_{infty}|f|_{1}<+infty$$
This means that $phi(t)$ is a well posed and bounded function:
$$0le phi(t)le |f|_{infty}|f|_{1} forall tin (0,+infty)$$
Note that for $0<t_1<t_2$, $S_{t_1}subset S_{t_2} impliesmathbb{R}^Nsetminus S_{t_1}supsetmathbb{R}^Nsetminus S_{t_2}$ so:
$$phi(t_1)=int_{mathbb{R}^{N}setminus S_{t_1}}|f(x)|^2dxge int_{mathbb{R}^{N}setminus S_{t_2}}|f(x)|^2dx=phi(t_2)$$
Hence $phi(t)$ is a bounded decreasing function, so $lim_{tto 0^{+}}phi(t)$ and $lim_{tto +infty}phi(t)$ exist and are finite.
Now, I would like to use the sequential criterion for a limit of a function:
$$lim_{tto 0^{+}}phi(t)=lim_{nto +infty}phileft(frac{1}{n}right)=lim_{nto +infty}int_{mathbb{R}^{N}setminus S_{frac{1}{n}}}|f(x)|^2dx=\ \ \ =lim_{nto +infty}int_{mathbb{R}^{N}}chi_{mathbb{R}^{N}setminus S_{frac{1}{n}}}(x)|f(x)|^2dx$$
Since $chi_{mathbb{R}^{N}setminus S_{frac{1}{n}}}(x)le 1$ the sequence
$$g_{n}(x):=chi_{mathbb{R}^{N}setminus S_{frac{1}{n}}}(x)|f(x)|^2le |f(x)|^2 forall xinmathbb{R}^{N}$$
I can use the dominated convergence theorem
$$lim_{nto +infty}int_{mathbb{R}^{N}}chi_{mathbb{R}^{N}setminus S_{frac{1}{n}}}(x)|f(x)|^2dx=int_{mathbb{R}^{N}}lim_{nto+infty}chi_{mathbb{R}^{N}setminus S_{frac{1}{n}}}(x)|f(x)|^2dx=int_{mathbb{R}^{N}}|f(x)|^2dx=|f|_{2}^2$$
For the limit $lim_{tto +infty}phi(t)$ I use the sequence $t_{n}=n$ so
$$lim_{tto +infty}phi(t)=lim_{nto +infty}int_{mathbb{R}^N}chi_{mathbb{R}^{N}setminus S_{n}}(x)|f(x)|^2dx=int_{mathbb{R}^N}overbrace{lim_{nto +infty}chi_{mathbb{R}^{N}setminus S_{n}}(x)}^{=0}|f(x)|^2dx=0$$
Is this approach ok? Thanks.
real-analysis integration functional-analysis measure-theory lp-spaces
$endgroup$
add a comment |
$begingroup$
Problem
Let $f(x)in L^{1}(mathbb{R}^N)cap L^{infty}(mathbb{R}^N)$ and $S_t=left{xinmathbb{R}^N: |x_1|le tright}$ with $t>0$. Let $phi(t)$ the integral function $$phi(t)=int_{mathbb{R}^Nsetminus S_t}|f(x)|^2dx$$
Find $$lim_{tto 0^{+}}phi(t) mbox{and} lim_{tto +infty}phi(t)$$
My approach
Since $f(x)in L^{1}(mathbb{R}^{N})cap L^{infty}(mathbb{R}^N)$ then $f(x)in L^{2}(mathbb{R}^{N})$.
Infact, by definition of integral
$$phi(t)=int_{mathbb{R}^Nsetminus S_t}|f(x)|^2dx=int_{mathbb{R}^{N}}chi_{mathbb{R}^Nsetminus S_{t}}(x)|f(x)|^2dxle\ \ le int_{mathbb{R}^{N}}|f(x)|^2dxle |f|_{infty}int_{mathbb{R}^{N}}|f(x)|dx=|f|_{infty}|f|_{1}<+infty$$
This means that $phi(t)$ is a well posed and bounded function:
$$0le phi(t)le |f|_{infty}|f|_{1} forall tin (0,+infty)$$
Note that for $0<t_1<t_2$, $S_{t_1}subset S_{t_2} impliesmathbb{R}^Nsetminus S_{t_1}supsetmathbb{R}^Nsetminus S_{t_2}$ so:
$$phi(t_1)=int_{mathbb{R}^{N}setminus S_{t_1}}|f(x)|^2dxge int_{mathbb{R}^{N}setminus S_{t_2}}|f(x)|^2dx=phi(t_2)$$
Hence $phi(t)$ is a bounded decreasing function, so $lim_{tto 0^{+}}phi(t)$ and $lim_{tto +infty}phi(t)$ exist and are finite.
Now, I would like to use the sequential criterion for a limit of a function:
$$lim_{tto 0^{+}}phi(t)=lim_{nto +infty}phileft(frac{1}{n}right)=lim_{nto +infty}int_{mathbb{R}^{N}setminus S_{frac{1}{n}}}|f(x)|^2dx=\ \ \ =lim_{nto +infty}int_{mathbb{R}^{N}}chi_{mathbb{R}^{N}setminus S_{frac{1}{n}}}(x)|f(x)|^2dx$$
Since $chi_{mathbb{R}^{N}setminus S_{frac{1}{n}}}(x)le 1$ the sequence
$$g_{n}(x):=chi_{mathbb{R}^{N}setminus S_{frac{1}{n}}}(x)|f(x)|^2le |f(x)|^2 forall xinmathbb{R}^{N}$$
I can use the dominated convergence theorem
$$lim_{nto +infty}int_{mathbb{R}^{N}}chi_{mathbb{R}^{N}setminus S_{frac{1}{n}}}(x)|f(x)|^2dx=int_{mathbb{R}^{N}}lim_{nto+infty}chi_{mathbb{R}^{N}setminus S_{frac{1}{n}}}(x)|f(x)|^2dx=int_{mathbb{R}^{N}}|f(x)|^2dx=|f|_{2}^2$$
For the limit $lim_{tto +infty}phi(t)$ I use the sequence $t_{n}=n$ so
$$lim_{tto +infty}phi(t)=lim_{nto +infty}int_{mathbb{R}^N}chi_{mathbb{R}^{N}setminus S_{n}}(x)|f(x)|^2dx=int_{mathbb{R}^N}overbrace{lim_{nto +infty}chi_{mathbb{R}^{N}setminus S_{n}}(x)}^{=0}|f(x)|^2dx=0$$
Is this approach ok? Thanks.
real-analysis integration functional-analysis measure-theory lp-spaces
$endgroup$
1
$begingroup$
Your argument is correct: the proof of the boundedness of $phi(t)$ is compact and elegant, while the calculation of the limits is a bit more lengthy but formally correct.
$endgroup$
– Daniele Tampieri
Dec 12 '18 at 19:39
$begingroup$
@DanieleTampieri: thank you! :) I would like to find the "fastest" way to evaluate the limits. Maybe there exists a theorem that could be useful...? Could you give me an hint?
$endgroup$
– Ixion
Dec 12 '18 at 21:09
$begingroup$
Mmm, let me see what can I do. I'll look at it.
$endgroup$
– Daniele Tampieri
Dec 12 '18 at 21:16
add a comment |
$begingroup$
Problem
Let $f(x)in L^{1}(mathbb{R}^N)cap L^{infty}(mathbb{R}^N)$ and $S_t=left{xinmathbb{R}^N: |x_1|le tright}$ with $t>0$. Let $phi(t)$ the integral function $$phi(t)=int_{mathbb{R}^Nsetminus S_t}|f(x)|^2dx$$
Find $$lim_{tto 0^{+}}phi(t) mbox{and} lim_{tto +infty}phi(t)$$
My approach
Since $f(x)in L^{1}(mathbb{R}^{N})cap L^{infty}(mathbb{R}^N)$ then $f(x)in L^{2}(mathbb{R}^{N})$.
Infact, by definition of integral
$$phi(t)=int_{mathbb{R}^Nsetminus S_t}|f(x)|^2dx=int_{mathbb{R}^{N}}chi_{mathbb{R}^Nsetminus S_{t}}(x)|f(x)|^2dxle\ \ le int_{mathbb{R}^{N}}|f(x)|^2dxle |f|_{infty}int_{mathbb{R}^{N}}|f(x)|dx=|f|_{infty}|f|_{1}<+infty$$
This means that $phi(t)$ is a well posed and bounded function:
$$0le phi(t)le |f|_{infty}|f|_{1} forall tin (0,+infty)$$
Note that for $0<t_1<t_2$, $S_{t_1}subset S_{t_2} impliesmathbb{R}^Nsetminus S_{t_1}supsetmathbb{R}^Nsetminus S_{t_2}$ so:
$$phi(t_1)=int_{mathbb{R}^{N}setminus S_{t_1}}|f(x)|^2dxge int_{mathbb{R}^{N}setminus S_{t_2}}|f(x)|^2dx=phi(t_2)$$
Hence $phi(t)$ is a bounded decreasing function, so $lim_{tto 0^{+}}phi(t)$ and $lim_{tto +infty}phi(t)$ exist and are finite.
Now, I would like to use the sequential criterion for a limit of a function:
$$lim_{tto 0^{+}}phi(t)=lim_{nto +infty}phileft(frac{1}{n}right)=lim_{nto +infty}int_{mathbb{R}^{N}setminus S_{frac{1}{n}}}|f(x)|^2dx=\ \ \ =lim_{nto +infty}int_{mathbb{R}^{N}}chi_{mathbb{R}^{N}setminus S_{frac{1}{n}}}(x)|f(x)|^2dx$$
Since $chi_{mathbb{R}^{N}setminus S_{frac{1}{n}}}(x)le 1$ the sequence
$$g_{n}(x):=chi_{mathbb{R}^{N}setminus S_{frac{1}{n}}}(x)|f(x)|^2le |f(x)|^2 forall xinmathbb{R}^{N}$$
I can use the dominated convergence theorem
$$lim_{nto +infty}int_{mathbb{R}^{N}}chi_{mathbb{R}^{N}setminus S_{frac{1}{n}}}(x)|f(x)|^2dx=int_{mathbb{R}^{N}}lim_{nto+infty}chi_{mathbb{R}^{N}setminus S_{frac{1}{n}}}(x)|f(x)|^2dx=int_{mathbb{R}^{N}}|f(x)|^2dx=|f|_{2}^2$$
For the limit $lim_{tto +infty}phi(t)$ I use the sequence $t_{n}=n$ so
$$lim_{tto +infty}phi(t)=lim_{nto +infty}int_{mathbb{R}^N}chi_{mathbb{R}^{N}setminus S_{n}}(x)|f(x)|^2dx=int_{mathbb{R}^N}overbrace{lim_{nto +infty}chi_{mathbb{R}^{N}setminus S_{n}}(x)}^{=0}|f(x)|^2dx=0$$
Is this approach ok? Thanks.
real-analysis integration functional-analysis measure-theory lp-spaces
$endgroup$
Problem
Let $f(x)in L^{1}(mathbb{R}^N)cap L^{infty}(mathbb{R}^N)$ and $S_t=left{xinmathbb{R}^N: |x_1|le tright}$ with $t>0$. Let $phi(t)$ the integral function $$phi(t)=int_{mathbb{R}^Nsetminus S_t}|f(x)|^2dx$$
Find $$lim_{tto 0^{+}}phi(t) mbox{and} lim_{tto +infty}phi(t)$$
My approach
Since $f(x)in L^{1}(mathbb{R}^{N})cap L^{infty}(mathbb{R}^N)$ then $f(x)in L^{2}(mathbb{R}^{N})$.
Infact, by definition of integral
$$phi(t)=int_{mathbb{R}^Nsetminus S_t}|f(x)|^2dx=int_{mathbb{R}^{N}}chi_{mathbb{R}^Nsetminus S_{t}}(x)|f(x)|^2dxle\ \ le int_{mathbb{R}^{N}}|f(x)|^2dxle |f|_{infty}int_{mathbb{R}^{N}}|f(x)|dx=|f|_{infty}|f|_{1}<+infty$$
This means that $phi(t)$ is a well posed and bounded function:
$$0le phi(t)le |f|_{infty}|f|_{1} forall tin (0,+infty)$$
Note that for $0<t_1<t_2$, $S_{t_1}subset S_{t_2} impliesmathbb{R}^Nsetminus S_{t_1}supsetmathbb{R}^Nsetminus S_{t_2}$ so:
$$phi(t_1)=int_{mathbb{R}^{N}setminus S_{t_1}}|f(x)|^2dxge int_{mathbb{R}^{N}setminus S_{t_2}}|f(x)|^2dx=phi(t_2)$$
Hence $phi(t)$ is a bounded decreasing function, so $lim_{tto 0^{+}}phi(t)$ and $lim_{tto +infty}phi(t)$ exist and are finite.
Now, I would like to use the sequential criterion for a limit of a function:
$$lim_{tto 0^{+}}phi(t)=lim_{nto +infty}phileft(frac{1}{n}right)=lim_{nto +infty}int_{mathbb{R}^{N}setminus S_{frac{1}{n}}}|f(x)|^2dx=\ \ \ =lim_{nto +infty}int_{mathbb{R}^{N}}chi_{mathbb{R}^{N}setminus S_{frac{1}{n}}}(x)|f(x)|^2dx$$
Since $chi_{mathbb{R}^{N}setminus S_{frac{1}{n}}}(x)le 1$ the sequence
$$g_{n}(x):=chi_{mathbb{R}^{N}setminus S_{frac{1}{n}}}(x)|f(x)|^2le |f(x)|^2 forall xinmathbb{R}^{N}$$
I can use the dominated convergence theorem
$$lim_{nto +infty}int_{mathbb{R}^{N}}chi_{mathbb{R}^{N}setminus S_{frac{1}{n}}}(x)|f(x)|^2dx=int_{mathbb{R}^{N}}lim_{nto+infty}chi_{mathbb{R}^{N}setminus S_{frac{1}{n}}}(x)|f(x)|^2dx=int_{mathbb{R}^{N}}|f(x)|^2dx=|f|_{2}^2$$
For the limit $lim_{tto +infty}phi(t)$ I use the sequence $t_{n}=n$ so
$$lim_{tto +infty}phi(t)=lim_{nto +infty}int_{mathbb{R}^N}chi_{mathbb{R}^{N}setminus S_{n}}(x)|f(x)|^2dx=int_{mathbb{R}^N}overbrace{lim_{nto +infty}chi_{mathbb{R}^{N}setminus S_{n}}(x)}^{=0}|f(x)|^2dx=0$$
Is this approach ok? Thanks.
real-analysis integration functional-analysis measure-theory lp-spaces
real-analysis integration functional-analysis measure-theory lp-spaces
asked Dec 12 '18 at 11:11
IxionIxion
768621
768621
1
$begingroup$
Your argument is correct: the proof of the boundedness of $phi(t)$ is compact and elegant, while the calculation of the limits is a bit more lengthy but formally correct.
$endgroup$
– Daniele Tampieri
Dec 12 '18 at 19:39
$begingroup$
@DanieleTampieri: thank you! :) I would like to find the "fastest" way to evaluate the limits. Maybe there exists a theorem that could be useful...? Could you give me an hint?
$endgroup$
– Ixion
Dec 12 '18 at 21:09
$begingroup$
Mmm, let me see what can I do. I'll look at it.
$endgroup$
– Daniele Tampieri
Dec 12 '18 at 21:16
add a comment |
1
$begingroup$
Your argument is correct: the proof of the boundedness of $phi(t)$ is compact and elegant, while the calculation of the limits is a bit more lengthy but formally correct.
$endgroup$
– Daniele Tampieri
Dec 12 '18 at 19:39
$begingroup$
@DanieleTampieri: thank you! :) I would like to find the "fastest" way to evaluate the limits. Maybe there exists a theorem that could be useful...? Could you give me an hint?
$endgroup$
– Ixion
Dec 12 '18 at 21:09
$begingroup$
Mmm, let me see what can I do. I'll look at it.
$endgroup$
– Daniele Tampieri
Dec 12 '18 at 21:16
1
1
$begingroup$
Your argument is correct: the proof of the boundedness of $phi(t)$ is compact and elegant, while the calculation of the limits is a bit more lengthy but formally correct.
$endgroup$
– Daniele Tampieri
Dec 12 '18 at 19:39
$begingroup$
Your argument is correct: the proof of the boundedness of $phi(t)$ is compact and elegant, while the calculation of the limits is a bit more lengthy but formally correct.
$endgroup$
– Daniele Tampieri
Dec 12 '18 at 19:39
$begingroup$
@DanieleTampieri: thank you! :) I would like to find the "fastest" way to evaluate the limits. Maybe there exists a theorem that could be useful...? Could you give me an hint?
$endgroup$
– Ixion
Dec 12 '18 at 21:09
$begingroup$
@DanieleTampieri: thank you! :) I would like to find the "fastest" way to evaluate the limits. Maybe there exists a theorem that could be useful...? Could you give me an hint?
$endgroup$
– Ixion
Dec 12 '18 at 21:09
$begingroup$
Mmm, let me see what can I do. I'll look at it.
$endgroup$
– Daniele Tampieri
Dec 12 '18 at 21:16
$begingroup$
Mmm, let me see what can I do. I'll look at it.
$endgroup$
– Daniele Tampieri
Dec 12 '18 at 21:16
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3036554%2flimits-of-a-multiple-integral-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3036554%2flimits-of-a-multiple-integral-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Your argument is correct: the proof of the boundedness of $phi(t)$ is compact and elegant, while the calculation of the limits is a bit more lengthy but formally correct.
$endgroup$
– Daniele Tampieri
Dec 12 '18 at 19:39
$begingroup$
@DanieleTampieri: thank you! :) I would like to find the "fastest" way to evaluate the limits. Maybe there exists a theorem that could be useful...? Could you give me an hint?
$endgroup$
– Ixion
Dec 12 '18 at 21:09
$begingroup$
Mmm, let me see what can I do. I'll look at it.
$endgroup$
– Daniele Tampieri
Dec 12 '18 at 21:16