Limits of a multiple integral function












4












$begingroup$


Problem



Let $f(x)in L^{1}(mathbb{R}^N)cap L^{infty}(mathbb{R}^N)$ and $S_t=left{xinmathbb{R}^N: |x_1|le tright}$ with $t>0$. Let $phi(t)$ the integral function $$phi(t)=int_{mathbb{R}^Nsetminus S_t}|f(x)|^2dx$$
Find $$lim_{tto 0^{+}}phi(t) mbox{and} lim_{tto +infty}phi(t)$$



My approach



Since $f(x)in L^{1}(mathbb{R}^{N})cap L^{infty}(mathbb{R}^N)$ then $f(x)in L^{2}(mathbb{R}^{N})$.



Infact, by definition of integral



$$phi(t)=int_{mathbb{R}^Nsetminus S_t}|f(x)|^2dx=int_{mathbb{R}^{N}}chi_{mathbb{R}^Nsetminus S_{t}}(x)|f(x)|^2dxle\ \ le int_{mathbb{R}^{N}}|f(x)|^2dxle |f|_{infty}int_{mathbb{R}^{N}}|f(x)|dx=|f|_{infty}|f|_{1}<+infty$$



This means that $phi(t)$ is a well posed and bounded function:



$$0le phi(t)le |f|_{infty}|f|_{1} forall tin (0,+infty)$$



Note that for $0<t_1<t_2$, $S_{t_1}subset S_{t_2} impliesmathbb{R}^Nsetminus S_{t_1}supsetmathbb{R}^Nsetminus S_{t_2}$ so:



$$phi(t_1)=int_{mathbb{R}^{N}setminus S_{t_1}}|f(x)|^2dxge int_{mathbb{R}^{N}setminus S_{t_2}}|f(x)|^2dx=phi(t_2)$$



Hence $phi(t)$ is a bounded decreasing function, so $lim_{tto 0^{+}}phi(t)$ and $lim_{tto +infty}phi(t)$ exist and are finite.



Now, I would like to use the sequential criterion for a limit of a function:



$$lim_{tto 0^{+}}phi(t)=lim_{nto +infty}phileft(frac{1}{n}right)=lim_{nto +infty}int_{mathbb{R}^{N}setminus S_{frac{1}{n}}}|f(x)|^2dx=\ \ \ =lim_{nto +infty}int_{mathbb{R}^{N}}chi_{mathbb{R}^{N}setminus S_{frac{1}{n}}}(x)|f(x)|^2dx$$



Since $chi_{mathbb{R}^{N}setminus S_{frac{1}{n}}}(x)le 1$ the sequence



$$g_{n}(x):=chi_{mathbb{R}^{N}setminus S_{frac{1}{n}}}(x)|f(x)|^2le |f(x)|^2 forall xinmathbb{R}^{N}$$



I can use the dominated convergence theorem



$$lim_{nto +infty}int_{mathbb{R}^{N}}chi_{mathbb{R}^{N}setminus S_{frac{1}{n}}}(x)|f(x)|^2dx=int_{mathbb{R}^{N}}lim_{nto+infty}chi_{mathbb{R}^{N}setminus S_{frac{1}{n}}}(x)|f(x)|^2dx=int_{mathbb{R}^{N}}|f(x)|^2dx=|f|_{2}^2$$



For the limit $lim_{tto +infty}phi(t)$ I use the sequence $t_{n}=n$ so



$$lim_{tto +infty}phi(t)=lim_{nto +infty}int_{mathbb{R}^N}chi_{mathbb{R}^{N}setminus S_{n}}(x)|f(x)|^2dx=int_{mathbb{R}^N}overbrace{lim_{nto +infty}chi_{mathbb{R}^{N}setminus S_{n}}(x)}^{=0}|f(x)|^2dx=0$$



Is this approach ok? Thanks.










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    Your argument is correct: the proof of the boundedness of $phi(t)$ is compact and elegant, while the calculation of the limits is a bit more lengthy but formally correct.
    $endgroup$
    – Daniele Tampieri
    Dec 12 '18 at 19:39










  • $begingroup$
    @DanieleTampieri: thank you! :) I would like to find the "fastest" way to evaluate the limits. Maybe there exists a theorem that could be useful...? Could you give me an hint?
    $endgroup$
    – Ixion
    Dec 12 '18 at 21:09










  • $begingroup$
    Mmm, let me see what can I do. I'll look at it.
    $endgroup$
    – Daniele Tampieri
    Dec 12 '18 at 21:16
















4












$begingroup$


Problem



Let $f(x)in L^{1}(mathbb{R}^N)cap L^{infty}(mathbb{R}^N)$ and $S_t=left{xinmathbb{R}^N: |x_1|le tright}$ with $t>0$. Let $phi(t)$ the integral function $$phi(t)=int_{mathbb{R}^Nsetminus S_t}|f(x)|^2dx$$
Find $$lim_{tto 0^{+}}phi(t) mbox{and} lim_{tto +infty}phi(t)$$



My approach



Since $f(x)in L^{1}(mathbb{R}^{N})cap L^{infty}(mathbb{R}^N)$ then $f(x)in L^{2}(mathbb{R}^{N})$.



Infact, by definition of integral



$$phi(t)=int_{mathbb{R}^Nsetminus S_t}|f(x)|^2dx=int_{mathbb{R}^{N}}chi_{mathbb{R}^Nsetminus S_{t}}(x)|f(x)|^2dxle\ \ le int_{mathbb{R}^{N}}|f(x)|^2dxle |f|_{infty}int_{mathbb{R}^{N}}|f(x)|dx=|f|_{infty}|f|_{1}<+infty$$



This means that $phi(t)$ is a well posed and bounded function:



$$0le phi(t)le |f|_{infty}|f|_{1} forall tin (0,+infty)$$



Note that for $0<t_1<t_2$, $S_{t_1}subset S_{t_2} impliesmathbb{R}^Nsetminus S_{t_1}supsetmathbb{R}^Nsetminus S_{t_2}$ so:



$$phi(t_1)=int_{mathbb{R}^{N}setminus S_{t_1}}|f(x)|^2dxge int_{mathbb{R}^{N}setminus S_{t_2}}|f(x)|^2dx=phi(t_2)$$



Hence $phi(t)$ is a bounded decreasing function, so $lim_{tto 0^{+}}phi(t)$ and $lim_{tto +infty}phi(t)$ exist and are finite.



Now, I would like to use the sequential criterion for a limit of a function:



$$lim_{tto 0^{+}}phi(t)=lim_{nto +infty}phileft(frac{1}{n}right)=lim_{nto +infty}int_{mathbb{R}^{N}setminus S_{frac{1}{n}}}|f(x)|^2dx=\ \ \ =lim_{nto +infty}int_{mathbb{R}^{N}}chi_{mathbb{R}^{N}setminus S_{frac{1}{n}}}(x)|f(x)|^2dx$$



Since $chi_{mathbb{R}^{N}setminus S_{frac{1}{n}}}(x)le 1$ the sequence



$$g_{n}(x):=chi_{mathbb{R}^{N}setminus S_{frac{1}{n}}}(x)|f(x)|^2le |f(x)|^2 forall xinmathbb{R}^{N}$$



I can use the dominated convergence theorem



$$lim_{nto +infty}int_{mathbb{R}^{N}}chi_{mathbb{R}^{N}setminus S_{frac{1}{n}}}(x)|f(x)|^2dx=int_{mathbb{R}^{N}}lim_{nto+infty}chi_{mathbb{R}^{N}setminus S_{frac{1}{n}}}(x)|f(x)|^2dx=int_{mathbb{R}^{N}}|f(x)|^2dx=|f|_{2}^2$$



For the limit $lim_{tto +infty}phi(t)$ I use the sequence $t_{n}=n$ so



$$lim_{tto +infty}phi(t)=lim_{nto +infty}int_{mathbb{R}^N}chi_{mathbb{R}^{N}setminus S_{n}}(x)|f(x)|^2dx=int_{mathbb{R}^N}overbrace{lim_{nto +infty}chi_{mathbb{R}^{N}setminus S_{n}}(x)}^{=0}|f(x)|^2dx=0$$



Is this approach ok? Thanks.










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    Your argument is correct: the proof of the boundedness of $phi(t)$ is compact and elegant, while the calculation of the limits is a bit more lengthy but formally correct.
    $endgroup$
    – Daniele Tampieri
    Dec 12 '18 at 19:39










  • $begingroup$
    @DanieleTampieri: thank you! :) I would like to find the "fastest" way to evaluate the limits. Maybe there exists a theorem that could be useful...? Could you give me an hint?
    $endgroup$
    – Ixion
    Dec 12 '18 at 21:09










  • $begingroup$
    Mmm, let me see what can I do. I'll look at it.
    $endgroup$
    – Daniele Tampieri
    Dec 12 '18 at 21:16














4












4








4





$begingroup$


Problem



Let $f(x)in L^{1}(mathbb{R}^N)cap L^{infty}(mathbb{R}^N)$ and $S_t=left{xinmathbb{R}^N: |x_1|le tright}$ with $t>0$. Let $phi(t)$ the integral function $$phi(t)=int_{mathbb{R}^Nsetminus S_t}|f(x)|^2dx$$
Find $$lim_{tto 0^{+}}phi(t) mbox{and} lim_{tto +infty}phi(t)$$



My approach



Since $f(x)in L^{1}(mathbb{R}^{N})cap L^{infty}(mathbb{R}^N)$ then $f(x)in L^{2}(mathbb{R}^{N})$.



Infact, by definition of integral



$$phi(t)=int_{mathbb{R}^Nsetminus S_t}|f(x)|^2dx=int_{mathbb{R}^{N}}chi_{mathbb{R}^Nsetminus S_{t}}(x)|f(x)|^2dxle\ \ le int_{mathbb{R}^{N}}|f(x)|^2dxle |f|_{infty}int_{mathbb{R}^{N}}|f(x)|dx=|f|_{infty}|f|_{1}<+infty$$



This means that $phi(t)$ is a well posed and bounded function:



$$0le phi(t)le |f|_{infty}|f|_{1} forall tin (0,+infty)$$



Note that for $0<t_1<t_2$, $S_{t_1}subset S_{t_2} impliesmathbb{R}^Nsetminus S_{t_1}supsetmathbb{R}^Nsetminus S_{t_2}$ so:



$$phi(t_1)=int_{mathbb{R}^{N}setminus S_{t_1}}|f(x)|^2dxge int_{mathbb{R}^{N}setminus S_{t_2}}|f(x)|^2dx=phi(t_2)$$



Hence $phi(t)$ is a bounded decreasing function, so $lim_{tto 0^{+}}phi(t)$ and $lim_{tto +infty}phi(t)$ exist and are finite.



Now, I would like to use the sequential criterion for a limit of a function:



$$lim_{tto 0^{+}}phi(t)=lim_{nto +infty}phileft(frac{1}{n}right)=lim_{nto +infty}int_{mathbb{R}^{N}setminus S_{frac{1}{n}}}|f(x)|^2dx=\ \ \ =lim_{nto +infty}int_{mathbb{R}^{N}}chi_{mathbb{R}^{N}setminus S_{frac{1}{n}}}(x)|f(x)|^2dx$$



Since $chi_{mathbb{R}^{N}setminus S_{frac{1}{n}}}(x)le 1$ the sequence



$$g_{n}(x):=chi_{mathbb{R}^{N}setminus S_{frac{1}{n}}}(x)|f(x)|^2le |f(x)|^2 forall xinmathbb{R}^{N}$$



I can use the dominated convergence theorem



$$lim_{nto +infty}int_{mathbb{R}^{N}}chi_{mathbb{R}^{N}setminus S_{frac{1}{n}}}(x)|f(x)|^2dx=int_{mathbb{R}^{N}}lim_{nto+infty}chi_{mathbb{R}^{N}setminus S_{frac{1}{n}}}(x)|f(x)|^2dx=int_{mathbb{R}^{N}}|f(x)|^2dx=|f|_{2}^2$$



For the limit $lim_{tto +infty}phi(t)$ I use the sequence $t_{n}=n$ so



$$lim_{tto +infty}phi(t)=lim_{nto +infty}int_{mathbb{R}^N}chi_{mathbb{R}^{N}setminus S_{n}}(x)|f(x)|^2dx=int_{mathbb{R}^N}overbrace{lim_{nto +infty}chi_{mathbb{R}^{N}setminus S_{n}}(x)}^{=0}|f(x)|^2dx=0$$



Is this approach ok? Thanks.










share|cite|improve this question









$endgroup$




Problem



Let $f(x)in L^{1}(mathbb{R}^N)cap L^{infty}(mathbb{R}^N)$ and $S_t=left{xinmathbb{R}^N: |x_1|le tright}$ with $t>0$. Let $phi(t)$ the integral function $$phi(t)=int_{mathbb{R}^Nsetminus S_t}|f(x)|^2dx$$
Find $$lim_{tto 0^{+}}phi(t) mbox{and} lim_{tto +infty}phi(t)$$



My approach



Since $f(x)in L^{1}(mathbb{R}^{N})cap L^{infty}(mathbb{R}^N)$ then $f(x)in L^{2}(mathbb{R}^{N})$.



Infact, by definition of integral



$$phi(t)=int_{mathbb{R}^Nsetminus S_t}|f(x)|^2dx=int_{mathbb{R}^{N}}chi_{mathbb{R}^Nsetminus S_{t}}(x)|f(x)|^2dxle\ \ le int_{mathbb{R}^{N}}|f(x)|^2dxle |f|_{infty}int_{mathbb{R}^{N}}|f(x)|dx=|f|_{infty}|f|_{1}<+infty$$



This means that $phi(t)$ is a well posed and bounded function:



$$0le phi(t)le |f|_{infty}|f|_{1} forall tin (0,+infty)$$



Note that for $0<t_1<t_2$, $S_{t_1}subset S_{t_2} impliesmathbb{R}^Nsetminus S_{t_1}supsetmathbb{R}^Nsetminus S_{t_2}$ so:



$$phi(t_1)=int_{mathbb{R}^{N}setminus S_{t_1}}|f(x)|^2dxge int_{mathbb{R}^{N}setminus S_{t_2}}|f(x)|^2dx=phi(t_2)$$



Hence $phi(t)$ is a bounded decreasing function, so $lim_{tto 0^{+}}phi(t)$ and $lim_{tto +infty}phi(t)$ exist and are finite.



Now, I would like to use the sequential criterion for a limit of a function:



$$lim_{tto 0^{+}}phi(t)=lim_{nto +infty}phileft(frac{1}{n}right)=lim_{nto +infty}int_{mathbb{R}^{N}setminus S_{frac{1}{n}}}|f(x)|^2dx=\ \ \ =lim_{nto +infty}int_{mathbb{R}^{N}}chi_{mathbb{R}^{N}setminus S_{frac{1}{n}}}(x)|f(x)|^2dx$$



Since $chi_{mathbb{R}^{N}setminus S_{frac{1}{n}}}(x)le 1$ the sequence



$$g_{n}(x):=chi_{mathbb{R}^{N}setminus S_{frac{1}{n}}}(x)|f(x)|^2le |f(x)|^2 forall xinmathbb{R}^{N}$$



I can use the dominated convergence theorem



$$lim_{nto +infty}int_{mathbb{R}^{N}}chi_{mathbb{R}^{N}setminus S_{frac{1}{n}}}(x)|f(x)|^2dx=int_{mathbb{R}^{N}}lim_{nto+infty}chi_{mathbb{R}^{N}setminus S_{frac{1}{n}}}(x)|f(x)|^2dx=int_{mathbb{R}^{N}}|f(x)|^2dx=|f|_{2}^2$$



For the limit $lim_{tto +infty}phi(t)$ I use the sequence $t_{n}=n$ so



$$lim_{tto +infty}phi(t)=lim_{nto +infty}int_{mathbb{R}^N}chi_{mathbb{R}^{N}setminus S_{n}}(x)|f(x)|^2dx=int_{mathbb{R}^N}overbrace{lim_{nto +infty}chi_{mathbb{R}^{N}setminus S_{n}}(x)}^{=0}|f(x)|^2dx=0$$



Is this approach ok? Thanks.







real-analysis integration functional-analysis measure-theory lp-spaces






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 12 '18 at 11:11









IxionIxion

768621




768621








  • 1




    $begingroup$
    Your argument is correct: the proof of the boundedness of $phi(t)$ is compact and elegant, while the calculation of the limits is a bit more lengthy but formally correct.
    $endgroup$
    – Daniele Tampieri
    Dec 12 '18 at 19:39










  • $begingroup$
    @DanieleTampieri: thank you! :) I would like to find the "fastest" way to evaluate the limits. Maybe there exists a theorem that could be useful...? Could you give me an hint?
    $endgroup$
    – Ixion
    Dec 12 '18 at 21:09










  • $begingroup$
    Mmm, let me see what can I do. I'll look at it.
    $endgroup$
    – Daniele Tampieri
    Dec 12 '18 at 21:16














  • 1




    $begingroup$
    Your argument is correct: the proof of the boundedness of $phi(t)$ is compact and elegant, while the calculation of the limits is a bit more lengthy but formally correct.
    $endgroup$
    – Daniele Tampieri
    Dec 12 '18 at 19:39










  • $begingroup$
    @DanieleTampieri: thank you! :) I would like to find the "fastest" way to evaluate the limits. Maybe there exists a theorem that could be useful...? Could you give me an hint?
    $endgroup$
    – Ixion
    Dec 12 '18 at 21:09










  • $begingroup$
    Mmm, let me see what can I do. I'll look at it.
    $endgroup$
    – Daniele Tampieri
    Dec 12 '18 at 21:16








1




1




$begingroup$
Your argument is correct: the proof of the boundedness of $phi(t)$ is compact and elegant, while the calculation of the limits is a bit more lengthy but formally correct.
$endgroup$
– Daniele Tampieri
Dec 12 '18 at 19:39




$begingroup$
Your argument is correct: the proof of the boundedness of $phi(t)$ is compact and elegant, while the calculation of the limits is a bit more lengthy but formally correct.
$endgroup$
– Daniele Tampieri
Dec 12 '18 at 19:39












$begingroup$
@DanieleTampieri: thank you! :) I would like to find the "fastest" way to evaluate the limits. Maybe there exists a theorem that could be useful...? Could you give me an hint?
$endgroup$
– Ixion
Dec 12 '18 at 21:09




$begingroup$
@DanieleTampieri: thank you! :) I would like to find the "fastest" way to evaluate the limits. Maybe there exists a theorem that could be useful...? Could you give me an hint?
$endgroup$
– Ixion
Dec 12 '18 at 21:09












$begingroup$
Mmm, let me see what can I do. I'll look at it.
$endgroup$
– Daniele Tampieri
Dec 12 '18 at 21:16




$begingroup$
Mmm, let me see what can I do. I'll look at it.
$endgroup$
– Daniele Tampieri
Dec 12 '18 at 21:16










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3036554%2flimits-of-a-multiple-integral-function%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3036554%2flimits-of-a-multiple-integral-function%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Probability when a professor distributes a quiz and homework assignment to a class of n students.

Aardman Animations

Are they similar matrix