function vanishing at infinity and integrability
$begingroup$
Suppose $m_n$ is the Lebesgue measure on $mathbb{R}^n$.
Def Let $f:mathbb{R}^nto mathbb{R}$ be continuous. We say that $f$ vanishes at infinity if for every $epsilon>0$ there is a compact $Ksubseteq mathbb{R}^n$ so that $|f|<epsilon$ outside $K$.
Is it true that every continuous $f:mathbb{R}^nto mathbb{R}$ that vanishes at infinity is integrable, ie $$int_{mathbb{R}^n}|f|dm_n<+infty$$ ???
Thanks a lot in advance.
integration measure-theory lebesgue-integral lebesgue-measure
$endgroup$
add a comment |
$begingroup$
Suppose $m_n$ is the Lebesgue measure on $mathbb{R}^n$.
Def Let $f:mathbb{R}^nto mathbb{R}$ be continuous. We say that $f$ vanishes at infinity if for every $epsilon>0$ there is a compact $Ksubseteq mathbb{R}^n$ so that $|f|<epsilon$ outside $K$.
Is it true that every continuous $f:mathbb{R}^nto mathbb{R}$ that vanishes at infinity is integrable, ie $$int_{mathbb{R}^n}|f|dm_n<+infty$$ ???
Thanks a lot in advance.
integration measure-theory lebesgue-integral lebesgue-measure
$endgroup$
add a comment |
$begingroup$
Suppose $m_n$ is the Lebesgue measure on $mathbb{R}^n$.
Def Let $f:mathbb{R}^nto mathbb{R}$ be continuous. We say that $f$ vanishes at infinity if for every $epsilon>0$ there is a compact $Ksubseteq mathbb{R}^n$ so that $|f|<epsilon$ outside $K$.
Is it true that every continuous $f:mathbb{R}^nto mathbb{R}$ that vanishes at infinity is integrable, ie $$int_{mathbb{R}^n}|f|dm_n<+infty$$ ???
Thanks a lot in advance.
integration measure-theory lebesgue-integral lebesgue-measure
$endgroup$
Suppose $m_n$ is the Lebesgue measure on $mathbb{R}^n$.
Def Let $f:mathbb{R}^nto mathbb{R}$ be continuous. We say that $f$ vanishes at infinity if for every $epsilon>0$ there is a compact $Ksubseteq mathbb{R}^n$ so that $|f|<epsilon$ outside $K$.
Is it true that every continuous $f:mathbb{R}^nto mathbb{R}$ that vanishes at infinity is integrable, ie $$int_{mathbb{R}^n}|f|dm_n<+infty$$ ???
Thanks a lot in advance.
integration measure-theory lebesgue-integral lebesgue-measure
integration measure-theory lebesgue-integral lebesgue-measure
asked Dec 12 '18 at 12:35
eleguitareleguitar
129114
129114
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Try $1/(|x|+1)$ in the case $n=1$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3036631%2ffunction-vanishing-at-infinity-and-integrability%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Try $1/(|x|+1)$ in the case $n=1$.
$endgroup$
add a comment |
$begingroup$
Try $1/(|x|+1)$ in the case $n=1$.
$endgroup$
add a comment |
$begingroup$
Try $1/(|x|+1)$ in the case $n=1$.
$endgroup$
Try $1/(|x|+1)$ in the case $n=1$.
answered Dec 12 '18 at 12:44
Robert IsraelRobert Israel
323k23212466
323k23212466
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3036631%2ffunction-vanishing-at-infinity-and-integrability%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown