If $f_X$ is a pdf of the r.v. $X$ what would be $g(s)=int_{mathbb R}f_X(x)delta (s-x)dx$?












0












$begingroup$


Let $X$ a real r.v. and $f_X$ it's pdf. What would be $$g(s)=int_{mathbb R}f_X(x)delta (s-x),mathrm d x,$$
where $delta $ is the Dirac distribution ? It look to be a pdf of some r.v. but which one ?



The problem is exactly as follow : Let $X$ and $Y$ two $mathcal N(0,1)$ r.v. with join pdf $f_{X,Y}$ (they are not supposed independent). Let $s=|x-y|$. Consider $$g(s)=int_{mathbb R^2}f_{X,Y}(x,y)delta (s-|x-y|),mathrm d x,mathrm d y.$$



What is exactely $g(s)$ ?










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    Let $X$ a real r.v. and $f_X$ it's pdf. What would be $$g(s)=int_{mathbb R}f_X(x)delta (s-x),mathrm d x,$$
    where $delta $ is the Dirac distribution ? It look to be a pdf of some r.v. but which one ?



    The problem is exactly as follow : Let $X$ and $Y$ two $mathcal N(0,1)$ r.v. with join pdf $f_{X,Y}$ (they are not supposed independent). Let $s=|x-y|$. Consider $$g(s)=int_{mathbb R^2}f_{X,Y}(x,y)delta (s-|x-y|),mathrm d x,mathrm d y.$$



    What is exactely $g(s)$ ?










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      Let $X$ a real r.v. and $f_X$ it's pdf. What would be $$g(s)=int_{mathbb R}f_X(x)delta (s-x),mathrm d x,$$
      where $delta $ is the Dirac distribution ? It look to be a pdf of some r.v. but which one ?



      The problem is exactly as follow : Let $X$ and $Y$ two $mathcal N(0,1)$ r.v. with join pdf $f_{X,Y}$ (they are not supposed independent). Let $s=|x-y|$. Consider $$g(s)=int_{mathbb R^2}f_{X,Y}(x,y)delta (s-|x-y|),mathrm d x,mathrm d y.$$



      What is exactely $g(s)$ ?










      share|cite|improve this question









      $endgroup$




      Let $X$ a real r.v. and $f_X$ it's pdf. What would be $$g(s)=int_{mathbb R}f_X(x)delta (s-x),mathrm d x,$$
      where $delta $ is the Dirac distribution ? It look to be a pdf of some r.v. but which one ?



      The problem is exactly as follow : Let $X$ and $Y$ two $mathcal N(0,1)$ r.v. with join pdf $f_{X,Y}$ (they are not supposed independent). Let $s=|x-y|$. Consider $$g(s)=int_{mathbb R^2}f_{X,Y}(x,y)delta (s-|x-y|),mathrm d x,mathrm d y.$$



      What is exactely $g(s)$ ?







      probability






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 12 '18 at 11:19









      user623855user623855

      1507




      1507






















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          Let $phi$ denote the $mathcal{N}(0,,1)$ pdf. Since $X-Ysimmathcal{N}(0,,2)$ has pdf $tfrac{1}{sqrt{2}}phi(tfrac{x}{sqrt{2}})$, $S:=|X-Y|$ has pdf $g(s)=sqrt{2}phi(tfrac{s}{sqrt{2}})=frac{1}{sqrt{pi}}exp-tfrac{s^2}{4}$ on $Bbb R^+$.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            in what it answer to my question ?
            $endgroup$
            – user623855
            Dec 12 '18 at 11:54










          • $begingroup$
            @user623855 See my edit.
            $endgroup$
            – J.G.
            Dec 12 '18 at 11:55










          • $begingroup$
            Can we say in general that $f(X_1,...,X_n)$ has pdf $$g(s)=int_{mathbb R^n}f_{X_1,...,X_n}(x_1,...,x_n)delta (s-f(x_1,...,x_n))dx_1...dx_n ?$$
            $endgroup$
            – user623855
            Dec 12 '18 at 11:58










          • $begingroup$
            @user623855 Yes. PMFs of functions of discrete variables have a similar form.
            $endgroup$
            – J.G.
            Dec 12 '18 at 12:00











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3036561%2fif-f-x-is-a-pdf-of-the-r-v-x-what-would-be-gs-int-mathbb-rf-xx-del%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          0












          $begingroup$

          Let $phi$ denote the $mathcal{N}(0,,1)$ pdf. Since $X-Ysimmathcal{N}(0,,2)$ has pdf $tfrac{1}{sqrt{2}}phi(tfrac{x}{sqrt{2}})$, $S:=|X-Y|$ has pdf $g(s)=sqrt{2}phi(tfrac{s}{sqrt{2}})=frac{1}{sqrt{pi}}exp-tfrac{s^2}{4}$ on $Bbb R^+$.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            in what it answer to my question ?
            $endgroup$
            – user623855
            Dec 12 '18 at 11:54










          • $begingroup$
            @user623855 See my edit.
            $endgroup$
            – J.G.
            Dec 12 '18 at 11:55










          • $begingroup$
            Can we say in general that $f(X_1,...,X_n)$ has pdf $$g(s)=int_{mathbb R^n}f_{X_1,...,X_n}(x_1,...,x_n)delta (s-f(x_1,...,x_n))dx_1...dx_n ?$$
            $endgroup$
            – user623855
            Dec 12 '18 at 11:58










          • $begingroup$
            @user623855 Yes. PMFs of functions of discrete variables have a similar form.
            $endgroup$
            – J.G.
            Dec 12 '18 at 12:00
















          0












          $begingroup$

          Let $phi$ denote the $mathcal{N}(0,,1)$ pdf. Since $X-Ysimmathcal{N}(0,,2)$ has pdf $tfrac{1}{sqrt{2}}phi(tfrac{x}{sqrt{2}})$, $S:=|X-Y|$ has pdf $g(s)=sqrt{2}phi(tfrac{s}{sqrt{2}})=frac{1}{sqrt{pi}}exp-tfrac{s^2}{4}$ on $Bbb R^+$.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            in what it answer to my question ?
            $endgroup$
            – user623855
            Dec 12 '18 at 11:54










          • $begingroup$
            @user623855 See my edit.
            $endgroup$
            – J.G.
            Dec 12 '18 at 11:55










          • $begingroup$
            Can we say in general that $f(X_1,...,X_n)$ has pdf $$g(s)=int_{mathbb R^n}f_{X_1,...,X_n}(x_1,...,x_n)delta (s-f(x_1,...,x_n))dx_1...dx_n ?$$
            $endgroup$
            – user623855
            Dec 12 '18 at 11:58










          • $begingroup$
            @user623855 Yes. PMFs of functions of discrete variables have a similar form.
            $endgroup$
            – J.G.
            Dec 12 '18 at 12:00














          0












          0








          0





          $begingroup$

          Let $phi$ denote the $mathcal{N}(0,,1)$ pdf. Since $X-Ysimmathcal{N}(0,,2)$ has pdf $tfrac{1}{sqrt{2}}phi(tfrac{x}{sqrt{2}})$, $S:=|X-Y|$ has pdf $g(s)=sqrt{2}phi(tfrac{s}{sqrt{2}})=frac{1}{sqrt{pi}}exp-tfrac{s^2}{4}$ on $Bbb R^+$.






          share|cite|improve this answer











          $endgroup$



          Let $phi$ denote the $mathcal{N}(0,,1)$ pdf. Since $X-Ysimmathcal{N}(0,,2)$ has pdf $tfrac{1}{sqrt{2}}phi(tfrac{x}{sqrt{2}})$, $S:=|X-Y|$ has pdf $g(s)=sqrt{2}phi(tfrac{s}{sqrt{2}})=frac{1}{sqrt{pi}}exp-tfrac{s^2}{4}$ on $Bbb R^+$.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Dec 12 '18 at 11:55

























          answered Dec 12 '18 at 11:36









          J.G.J.G.

          26.4k22541




          26.4k22541












          • $begingroup$
            in what it answer to my question ?
            $endgroup$
            – user623855
            Dec 12 '18 at 11:54










          • $begingroup$
            @user623855 See my edit.
            $endgroup$
            – J.G.
            Dec 12 '18 at 11:55










          • $begingroup$
            Can we say in general that $f(X_1,...,X_n)$ has pdf $$g(s)=int_{mathbb R^n}f_{X_1,...,X_n}(x_1,...,x_n)delta (s-f(x_1,...,x_n))dx_1...dx_n ?$$
            $endgroup$
            – user623855
            Dec 12 '18 at 11:58










          • $begingroup$
            @user623855 Yes. PMFs of functions of discrete variables have a similar form.
            $endgroup$
            – J.G.
            Dec 12 '18 at 12:00


















          • $begingroup$
            in what it answer to my question ?
            $endgroup$
            – user623855
            Dec 12 '18 at 11:54










          • $begingroup$
            @user623855 See my edit.
            $endgroup$
            – J.G.
            Dec 12 '18 at 11:55










          • $begingroup$
            Can we say in general that $f(X_1,...,X_n)$ has pdf $$g(s)=int_{mathbb R^n}f_{X_1,...,X_n}(x_1,...,x_n)delta (s-f(x_1,...,x_n))dx_1...dx_n ?$$
            $endgroup$
            – user623855
            Dec 12 '18 at 11:58










          • $begingroup$
            @user623855 Yes. PMFs of functions of discrete variables have a similar form.
            $endgroup$
            – J.G.
            Dec 12 '18 at 12:00
















          $begingroup$
          in what it answer to my question ?
          $endgroup$
          – user623855
          Dec 12 '18 at 11:54




          $begingroup$
          in what it answer to my question ?
          $endgroup$
          – user623855
          Dec 12 '18 at 11:54












          $begingroup$
          @user623855 See my edit.
          $endgroup$
          – J.G.
          Dec 12 '18 at 11:55




          $begingroup$
          @user623855 See my edit.
          $endgroup$
          – J.G.
          Dec 12 '18 at 11:55












          $begingroup$
          Can we say in general that $f(X_1,...,X_n)$ has pdf $$g(s)=int_{mathbb R^n}f_{X_1,...,X_n}(x_1,...,x_n)delta (s-f(x_1,...,x_n))dx_1...dx_n ?$$
          $endgroup$
          – user623855
          Dec 12 '18 at 11:58




          $begingroup$
          Can we say in general that $f(X_1,...,X_n)$ has pdf $$g(s)=int_{mathbb R^n}f_{X_1,...,X_n}(x_1,...,x_n)delta (s-f(x_1,...,x_n))dx_1...dx_n ?$$
          $endgroup$
          – user623855
          Dec 12 '18 at 11:58












          $begingroup$
          @user623855 Yes. PMFs of functions of discrete variables have a similar form.
          $endgroup$
          – J.G.
          Dec 12 '18 at 12:00




          $begingroup$
          @user623855 Yes. PMFs of functions of discrete variables have a similar form.
          $endgroup$
          – J.G.
          Dec 12 '18 at 12:00


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3036561%2fif-f-x-is-a-pdf-of-the-r-v-x-what-would-be-gs-int-mathbb-rf-xx-del%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Probability when a professor distributes a quiz and homework assignment to a class of n students.

          Aardman Animations

          Are they similar matrix