If $f_X$ is a pdf of the r.v. $X$ what would be $g(s)=int_{mathbb R}f_X(x)delta (s-x)dx$?
$begingroup$
Let $X$ a real r.v. and $f_X$ it's pdf. What would be $$g(s)=int_{mathbb R}f_X(x)delta (s-x),mathrm d x,$$
where $delta $ is the Dirac distribution ? It look to be a pdf of some r.v. but which one ?
The problem is exactly as follow : Let $X$ and $Y$ two $mathcal N(0,1)$ r.v. with join pdf $f_{X,Y}$ (they are not supposed independent). Let $s=|x-y|$. Consider $$g(s)=int_{mathbb R^2}f_{X,Y}(x,y)delta (s-|x-y|),mathrm d x,mathrm d y.$$
What is exactely $g(s)$ ?
probability
$endgroup$
add a comment |
$begingroup$
Let $X$ a real r.v. and $f_X$ it's pdf. What would be $$g(s)=int_{mathbb R}f_X(x)delta (s-x),mathrm d x,$$
where $delta $ is the Dirac distribution ? It look to be a pdf of some r.v. but which one ?
The problem is exactly as follow : Let $X$ and $Y$ two $mathcal N(0,1)$ r.v. with join pdf $f_{X,Y}$ (they are not supposed independent). Let $s=|x-y|$. Consider $$g(s)=int_{mathbb R^2}f_{X,Y}(x,y)delta (s-|x-y|),mathrm d x,mathrm d y.$$
What is exactely $g(s)$ ?
probability
$endgroup$
add a comment |
$begingroup$
Let $X$ a real r.v. and $f_X$ it's pdf. What would be $$g(s)=int_{mathbb R}f_X(x)delta (s-x),mathrm d x,$$
where $delta $ is the Dirac distribution ? It look to be a pdf of some r.v. but which one ?
The problem is exactly as follow : Let $X$ and $Y$ two $mathcal N(0,1)$ r.v. with join pdf $f_{X,Y}$ (they are not supposed independent). Let $s=|x-y|$. Consider $$g(s)=int_{mathbb R^2}f_{X,Y}(x,y)delta (s-|x-y|),mathrm d x,mathrm d y.$$
What is exactely $g(s)$ ?
probability
$endgroup$
Let $X$ a real r.v. and $f_X$ it's pdf. What would be $$g(s)=int_{mathbb R}f_X(x)delta (s-x),mathrm d x,$$
where $delta $ is the Dirac distribution ? It look to be a pdf of some r.v. but which one ?
The problem is exactly as follow : Let $X$ and $Y$ two $mathcal N(0,1)$ r.v. with join pdf $f_{X,Y}$ (they are not supposed independent). Let $s=|x-y|$. Consider $$g(s)=int_{mathbb R^2}f_{X,Y}(x,y)delta (s-|x-y|),mathrm d x,mathrm d y.$$
What is exactely $g(s)$ ?
probability
probability
asked Dec 12 '18 at 11:19
user623855user623855
1507
1507
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Let $phi$ denote the $mathcal{N}(0,,1)$ pdf. Since $X-Ysimmathcal{N}(0,,2)$ has pdf $tfrac{1}{sqrt{2}}phi(tfrac{x}{sqrt{2}})$, $S:=|X-Y|$ has pdf $g(s)=sqrt{2}phi(tfrac{s}{sqrt{2}})=frac{1}{sqrt{pi}}exp-tfrac{s^2}{4}$ on $Bbb R^+$.
$endgroup$
$begingroup$
in what it answer to my question ?
$endgroup$
– user623855
Dec 12 '18 at 11:54
$begingroup$
@user623855 See my edit.
$endgroup$
– J.G.
Dec 12 '18 at 11:55
$begingroup$
Can we say in general that $f(X_1,...,X_n)$ has pdf $$g(s)=int_{mathbb R^n}f_{X_1,...,X_n}(x_1,...,x_n)delta (s-f(x_1,...,x_n))dx_1...dx_n ?$$
$endgroup$
– user623855
Dec 12 '18 at 11:58
$begingroup$
@user623855 Yes. PMFs of functions of discrete variables have a similar form.
$endgroup$
– J.G.
Dec 12 '18 at 12:00
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3036561%2fif-f-x-is-a-pdf-of-the-r-v-x-what-would-be-gs-int-mathbb-rf-xx-del%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let $phi$ denote the $mathcal{N}(0,,1)$ pdf. Since $X-Ysimmathcal{N}(0,,2)$ has pdf $tfrac{1}{sqrt{2}}phi(tfrac{x}{sqrt{2}})$, $S:=|X-Y|$ has pdf $g(s)=sqrt{2}phi(tfrac{s}{sqrt{2}})=frac{1}{sqrt{pi}}exp-tfrac{s^2}{4}$ on $Bbb R^+$.
$endgroup$
$begingroup$
in what it answer to my question ?
$endgroup$
– user623855
Dec 12 '18 at 11:54
$begingroup$
@user623855 See my edit.
$endgroup$
– J.G.
Dec 12 '18 at 11:55
$begingroup$
Can we say in general that $f(X_1,...,X_n)$ has pdf $$g(s)=int_{mathbb R^n}f_{X_1,...,X_n}(x_1,...,x_n)delta (s-f(x_1,...,x_n))dx_1...dx_n ?$$
$endgroup$
– user623855
Dec 12 '18 at 11:58
$begingroup$
@user623855 Yes. PMFs of functions of discrete variables have a similar form.
$endgroup$
– J.G.
Dec 12 '18 at 12:00
add a comment |
$begingroup$
Let $phi$ denote the $mathcal{N}(0,,1)$ pdf. Since $X-Ysimmathcal{N}(0,,2)$ has pdf $tfrac{1}{sqrt{2}}phi(tfrac{x}{sqrt{2}})$, $S:=|X-Y|$ has pdf $g(s)=sqrt{2}phi(tfrac{s}{sqrt{2}})=frac{1}{sqrt{pi}}exp-tfrac{s^2}{4}$ on $Bbb R^+$.
$endgroup$
$begingroup$
in what it answer to my question ?
$endgroup$
– user623855
Dec 12 '18 at 11:54
$begingroup$
@user623855 See my edit.
$endgroup$
– J.G.
Dec 12 '18 at 11:55
$begingroup$
Can we say in general that $f(X_1,...,X_n)$ has pdf $$g(s)=int_{mathbb R^n}f_{X_1,...,X_n}(x_1,...,x_n)delta (s-f(x_1,...,x_n))dx_1...dx_n ?$$
$endgroup$
– user623855
Dec 12 '18 at 11:58
$begingroup$
@user623855 Yes. PMFs of functions of discrete variables have a similar form.
$endgroup$
– J.G.
Dec 12 '18 at 12:00
add a comment |
$begingroup$
Let $phi$ denote the $mathcal{N}(0,,1)$ pdf. Since $X-Ysimmathcal{N}(0,,2)$ has pdf $tfrac{1}{sqrt{2}}phi(tfrac{x}{sqrt{2}})$, $S:=|X-Y|$ has pdf $g(s)=sqrt{2}phi(tfrac{s}{sqrt{2}})=frac{1}{sqrt{pi}}exp-tfrac{s^2}{4}$ on $Bbb R^+$.
$endgroup$
Let $phi$ denote the $mathcal{N}(0,,1)$ pdf. Since $X-Ysimmathcal{N}(0,,2)$ has pdf $tfrac{1}{sqrt{2}}phi(tfrac{x}{sqrt{2}})$, $S:=|X-Y|$ has pdf $g(s)=sqrt{2}phi(tfrac{s}{sqrt{2}})=frac{1}{sqrt{pi}}exp-tfrac{s^2}{4}$ on $Bbb R^+$.
edited Dec 12 '18 at 11:55
answered Dec 12 '18 at 11:36
J.G.J.G.
26.4k22541
26.4k22541
$begingroup$
in what it answer to my question ?
$endgroup$
– user623855
Dec 12 '18 at 11:54
$begingroup$
@user623855 See my edit.
$endgroup$
– J.G.
Dec 12 '18 at 11:55
$begingroup$
Can we say in general that $f(X_1,...,X_n)$ has pdf $$g(s)=int_{mathbb R^n}f_{X_1,...,X_n}(x_1,...,x_n)delta (s-f(x_1,...,x_n))dx_1...dx_n ?$$
$endgroup$
– user623855
Dec 12 '18 at 11:58
$begingroup$
@user623855 Yes. PMFs of functions of discrete variables have a similar form.
$endgroup$
– J.G.
Dec 12 '18 at 12:00
add a comment |
$begingroup$
in what it answer to my question ?
$endgroup$
– user623855
Dec 12 '18 at 11:54
$begingroup$
@user623855 See my edit.
$endgroup$
– J.G.
Dec 12 '18 at 11:55
$begingroup$
Can we say in general that $f(X_1,...,X_n)$ has pdf $$g(s)=int_{mathbb R^n}f_{X_1,...,X_n}(x_1,...,x_n)delta (s-f(x_1,...,x_n))dx_1...dx_n ?$$
$endgroup$
– user623855
Dec 12 '18 at 11:58
$begingroup$
@user623855 Yes. PMFs of functions of discrete variables have a similar form.
$endgroup$
– J.G.
Dec 12 '18 at 12:00
$begingroup$
in what it answer to my question ?
$endgroup$
– user623855
Dec 12 '18 at 11:54
$begingroup$
in what it answer to my question ?
$endgroup$
– user623855
Dec 12 '18 at 11:54
$begingroup$
@user623855 See my edit.
$endgroup$
– J.G.
Dec 12 '18 at 11:55
$begingroup$
@user623855 See my edit.
$endgroup$
– J.G.
Dec 12 '18 at 11:55
$begingroup$
Can we say in general that $f(X_1,...,X_n)$ has pdf $$g(s)=int_{mathbb R^n}f_{X_1,...,X_n}(x_1,...,x_n)delta (s-f(x_1,...,x_n))dx_1...dx_n ?$$
$endgroup$
– user623855
Dec 12 '18 at 11:58
$begingroup$
Can we say in general that $f(X_1,...,X_n)$ has pdf $$g(s)=int_{mathbb R^n}f_{X_1,...,X_n}(x_1,...,x_n)delta (s-f(x_1,...,x_n))dx_1...dx_n ?$$
$endgroup$
– user623855
Dec 12 '18 at 11:58
$begingroup$
@user623855 Yes. PMFs of functions of discrete variables have a similar form.
$endgroup$
– J.G.
Dec 12 '18 at 12:00
$begingroup$
@user623855 Yes. PMFs of functions of discrete variables have a similar form.
$endgroup$
– J.G.
Dec 12 '18 at 12:00
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3036561%2fif-f-x-is-a-pdf-of-the-r-v-x-what-would-be-gs-int-mathbb-rf-xx-del%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown