Operator norm $ ( ell_2 to ell_1)$
$begingroup$
Let $X$ be a finite dimensional normed vector space and $Y$ an arbitrary normed vector space. $ T:X→Y$.
I want to calculate $|T|$ for where $X = K^n$, equipped with the Euclidean norm $|cdot|_2$, $Y := ell_1(mathbb{N})$ and $Tx := (x_1,ldots,x_n,0,0,ldots) in ell_1(mathbb{N})$, for all $x = (x_1,ldots,x_n) in K^n$.
I do not know how to continue
$$ ||T∥_2 = sup limits_{x neq 0} frac{∥Tx∥_1}{∥x∥_2} = sup limits_{x neq 0} frac{∥(x_1,…,x_n,0,0,…)∥_1}{∥(x_1,…,x_n)∥_2} = sup limits_{x neq 0} frac{|x_1|+…+|x_n|}{(|x_1|^2+…+|x_n|^2)^{frac{1}{2}}}= ? $$
functional-analysis operator-theory norm normed-spaces lp-spaces
$endgroup$
add a comment |
$begingroup$
Let $X$ be a finite dimensional normed vector space and $Y$ an arbitrary normed vector space. $ T:X→Y$.
I want to calculate $|T|$ for where $X = K^n$, equipped with the Euclidean norm $|cdot|_2$, $Y := ell_1(mathbb{N})$ and $Tx := (x_1,ldots,x_n,0,0,ldots) in ell_1(mathbb{N})$, for all $x = (x_1,ldots,x_n) in K^n$.
I do not know how to continue
$$ ||T∥_2 = sup limits_{x neq 0} frac{∥Tx∥_1}{∥x∥_2} = sup limits_{x neq 0} frac{∥(x_1,…,x_n,0,0,…)∥_1}{∥(x_1,…,x_n)∥_2} = sup limits_{x neq 0} frac{|x_1|+…+|x_n|}{(|x_1|^2+…+|x_n|^2)^{frac{1}{2}}}= ? $$
functional-analysis operator-theory norm normed-spaces lp-spaces
$endgroup$
$begingroup$
I don't think that it's a good approach, but you can use the fact that $||T|| = sup_{x: ||x||_{2} = 1} {||Tx||_{1}}$ and apply Lagrange multipliers then. In other words you shall find $|x_{1}| + ldots + |x_{n}| rightarrow text{max}$, while $|x_{1}|^{2} + ldots |x_{n}|^{2} = 1$
$endgroup$
– hyperkahler
Dec 16 '18 at 20:30
$begingroup$
I am tried around a lot. I have never worked with Lagrange multiplier, but $||T∥_2 = sup limits_{∥x∥_2 = 1} ∥Tx ||_1 $.
$endgroup$
– Anna Schmitz
Dec 16 '18 at 20:38
add a comment |
$begingroup$
Let $X$ be a finite dimensional normed vector space and $Y$ an arbitrary normed vector space. $ T:X→Y$.
I want to calculate $|T|$ for where $X = K^n$, equipped with the Euclidean norm $|cdot|_2$, $Y := ell_1(mathbb{N})$ and $Tx := (x_1,ldots,x_n,0,0,ldots) in ell_1(mathbb{N})$, for all $x = (x_1,ldots,x_n) in K^n$.
I do not know how to continue
$$ ||T∥_2 = sup limits_{x neq 0} frac{∥Tx∥_1}{∥x∥_2} = sup limits_{x neq 0} frac{∥(x_1,…,x_n,0,0,…)∥_1}{∥(x_1,…,x_n)∥_2} = sup limits_{x neq 0} frac{|x_1|+…+|x_n|}{(|x_1|^2+…+|x_n|^2)^{frac{1}{2}}}= ? $$
functional-analysis operator-theory norm normed-spaces lp-spaces
$endgroup$
Let $X$ be a finite dimensional normed vector space and $Y$ an arbitrary normed vector space. $ T:X→Y$.
I want to calculate $|T|$ for where $X = K^n$, equipped with the Euclidean norm $|cdot|_2$, $Y := ell_1(mathbb{N})$ and $Tx := (x_1,ldots,x_n,0,0,ldots) in ell_1(mathbb{N})$, for all $x = (x_1,ldots,x_n) in K^n$.
I do not know how to continue
$$ ||T∥_2 = sup limits_{x neq 0} frac{∥Tx∥_1}{∥x∥_2} = sup limits_{x neq 0} frac{∥(x_1,…,x_n,0,0,…)∥_1}{∥(x_1,…,x_n)∥_2} = sup limits_{x neq 0} frac{|x_1|+…+|x_n|}{(|x_1|^2+…+|x_n|^2)^{frac{1}{2}}}= ? $$
functional-analysis operator-theory norm normed-spaces lp-spaces
functional-analysis operator-theory norm normed-spaces lp-spaces
edited Dec 18 '18 at 15:34
user593746
asked Dec 16 '18 at 20:16
Anna SchmitzAnna Schmitz
917
917
$begingroup$
I don't think that it's a good approach, but you can use the fact that $||T|| = sup_{x: ||x||_{2} = 1} {||Tx||_{1}}$ and apply Lagrange multipliers then. In other words you shall find $|x_{1}| + ldots + |x_{n}| rightarrow text{max}$, while $|x_{1}|^{2} + ldots |x_{n}|^{2} = 1$
$endgroup$
– hyperkahler
Dec 16 '18 at 20:30
$begingroup$
I am tried around a lot. I have never worked with Lagrange multiplier, but $||T∥_2 = sup limits_{∥x∥_2 = 1} ∥Tx ||_1 $.
$endgroup$
– Anna Schmitz
Dec 16 '18 at 20:38
add a comment |
$begingroup$
I don't think that it's a good approach, but you can use the fact that $||T|| = sup_{x: ||x||_{2} = 1} {||Tx||_{1}}$ and apply Lagrange multipliers then. In other words you shall find $|x_{1}| + ldots + |x_{n}| rightarrow text{max}$, while $|x_{1}|^{2} + ldots |x_{n}|^{2} = 1$
$endgroup$
– hyperkahler
Dec 16 '18 at 20:30
$begingroup$
I am tried around a lot. I have never worked with Lagrange multiplier, but $||T∥_2 = sup limits_{∥x∥_2 = 1} ∥Tx ||_1 $.
$endgroup$
– Anna Schmitz
Dec 16 '18 at 20:38
$begingroup$
I don't think that it's a good approach, but you can use the fact that $||T|| = sup_{x: ||x||_{2} = 1} {||Tx||_{1}}$ and apply Lagrange multipliers then. In other words you shall find $|x_{1}| + ldots + |x_{n}| rightarrow text{max}$, while $|x_{1}|^{2} + ldots |x_{n}|^{2} = 1$
$endgroup$
– hyperkahler
Dec 16 '18 at 20:30
$begingroup$
I don't think that it's a good approach, but you can use the fact that $||T|| = sup_{x: ||x||_{2} = 1} {||Tx||_{1}}$ and apply Lagrange multipliers then. In other words you shall find $|x_{1}| + ldots + |x_{n}| rightarrow text{max}$, while $|x_{1}|^{2} + ldots |x_{n}|^{2} = 1$
$endgroup$
– hyperkahler
Dec 16 '18 at 20:30
$begingroup$
I am tried around a lot. I have never worked with Lagrange multiplier, but $||T∥_2 = sup limits_{∥x∥_2 = 1} ∥Tx ||_1 $.
$endgroup$
– Anna Schmitz
Dec 16 '18 at 20:38
$begingroup$
I am tried around a lot. I have never worked with Lagrange multiplier, but $||T∥_2 = sup limits_{∥x∥_2 = 1} ∥Tx ||_1 $.
$endgroup$
– Anna Schmitz
Dec 16 '18 at 20:38
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
I will elaborate on my comment above
Given an operator $T: X rightarrow Y$ where $$X = mathbb{K}^{n}$$
$$Y = l^{1}(mathbb{N})$$ its norm is given by
$$||T||_{op} = sup_{x neq 0}{frac{||Tx||_{1}}{||x||_{2}}} = sup_{||x||_{2} leq 1}{||Tx||_{1}} = sup_{||x||_{2} = 1}{||Tx||_{1}}$$
So we have to maximize $$||Tx||_{1} = |x_{1}| + ldots + |x_{n}|$$ given $$||x||_{2} := (x_{1}^{2} + ldots + x_{n}^{2})^{frac{1}{2}} = 1$$
Let $t_{i} := |x_{i}|$, then our problem reformulates as follows:
$$t_{1} + t_{2} + ldots + t_{n} rightarrow text{max}$$
$$t_{1}^{2} + t_{2}^{2} + ldots + t_{n}^{2} = 1$$
$$t_{i} geq 0, forall i = 1, ldots, n$$
The Lagrangian for the problem is:
$$L = (t_{1} + ldots + t_{n}) - lambda (t_{1}^{2} + ldots + t_{n}^{2} - 1)$$
and $lambda$ stays for the lagrange multiplier.
The necessary extremum condition implies:
$$frac{partial L}{partial t_{i}} := 1 - lambda(2t_{i}) = 0$$
thus $t_{i} = frac{1}{2 lambda}$. Since $t_{i} geq 0$ it follows that $lambda > 0$.
The stationary point is $x = (frac{1}{2 lambda}, ldots, frac{1}{2 lambda})$ and we shall find the lambda such that the solution satisfy the second condition in the problem above.
$||x||_{2} = 1$ is equivalent to
$$ n cdot frac{1}{4 lambda^{2}} = 1$$ from which we get
$lambda = frac{sqrt{n}}{2}$
(note that we shall choose it positive due to the restrictions mentioned above)
Thus $t_{i} = frac{1}{sqrt{n}}$ and the maximum equals $$text{max} = n cdot frac{1}{sqrt{n}} = sqrt{n}$$
$endgroup$
1
$begingroup$
Hi, how does $n cdot 1/n = sqrt{n}$ ? Also, nice alternative thinking but that's a bit off the road of functinal analysis.
$endgroup$
– Rebellos
Dec 16 '18 at 21:16
$begingroup$
@Rebellos i've made a mistake, please, check the answer for the updates
$endgroup$
– hyperkahler
Dec 16 '18 at 21:25
add a comment |
$begingroup$
Using Cauchy-Schwarz inequality, we have
$$
sum_{i=1}^nleftlvert x_irightrvert=sum_{i=1}^nleftlvert x_irightrvertcdot 1leqslant left(sum_{i=1}^nx_i^2right)^{1/2}left(sum_{i=1}^n1right)^{1/2}=sqrt nleft(sum_{i=1}^nx_i^2right)^{1/2}
$$
hence $leftlVert TrightrVertleqslant sqrt n$.
For the opposite inequality, look at the case where $x_i=1$ for all $iin{1,dots,n}$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3043100%2foperator-norm-ell-2-to-ell-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
I will elaborate on my comment above
Given an operator $T: X rightarrow Y$ where $$X = mathbb{K}^{n}$$
$$Y = l^{1}(mathbb{N})$$ its norm is given by
$$||T||_{op} = sup_{x neq 0}{frac{||Tx||_{1}}{||x||_{2}}} = sup_{||x||_{2} leq 1}{||Tx||_{1}} = sup_{||x||_{2} = 1}{||Tx||_{1}}$$
So we have to maximize $$||Tx||_{1} = |x_{1}| + ldots + |x_{n}|$$ given $$||x||_{2} := (x_{1}^{2} + ldots + x_{n}^{2})^{frac{1}{2}} = 1$$
Let $t_{i} := |x_{i}|$, then our problem reformulates as follows:
$$t_{1} + t_{2} + ldots + t_{n} rightarrow text{max}$$
$$t_{1}^{2} + t_{2}^{2} + ldots + t_{n}^{2} = 1$$
$$t_{i} geq 0, forall i = 1, ldots, n$$
The Lagrangian for the problem is:
$$L = (t_{1} + ldots + t_{n}) - lambda (t_{1}^{2} + ldots + t_{n}^{2} - 1)$$
and $lambda$ stays for the lagrange multiplier.
The necessary extremum condition implies:
$$frac{partial L}{partial t_{i}} := 1 - lambda(2t_{i}) = 0$$
thus $t_{i} = frac{1}{2 lambda}$. Since $t_{i} geq 0$ it follows that $lambda > 0$.
The stationary point is $x = (frac{1}{2 lambda}, ldots, frac{1}{2 lambda})$ and we shall find the lambda such that the solution satisfy the second condition in the problem above.
$||x||_{2} = 1$ is equivalent to
$$ n cdot frac{1}{4 lambda^{2}} = 1$$ from which we get
$lambda = frac{sqrt{n}}{2}$
(note that we shall choose it positive due to the restrictions mentioned above)
Thus $t_{i} = frac{1}{sqrt{n}}$ and the maximum equals $$text{max} = n cdot frac{1}{sqrt{n}} = sqrt{n}$$
$endgroup$
1
$begingroup$
Hi, how does $n cdot 1/n = sqrt{n}$ ? Also, nice alternative thinking but that's a bit off the road of functinal analysis.
$endgroup$
– Rebellos
Dec 16 '18 at 21:16
$begingroup$
@Rebellos i've made a mistake, please, check the answer for the updates
$endgroup$
– hyperkahler
Dec 16 '18 at 21:25
add a comment |
$begingroup$
I will elaborate on my comment above
Given an operator $T: X rightarrow Y$ where $$X = mathbb{K}^{n}$$
$$Y = l^{1}(mathbb{N})$$ its norm is given by
$$||T||_{op} = sup_{x neq 0}{frac{||Tx||_{1}}{||x||_{2}}} = sup_{||x||_{2} leq 1}{||Tx||_{1}} = sup_{||x||_{2} = 1}{||Tx||_{1}}$$
So we have to maximize $$||Tx||_{1} = |x_{1}| + ldots + |x_{n}|$$ given $$||x||_{2} := (x_{1}^{2} + ldots + x_{n}^{2})^{frac{1}{2}} = 1$$
Let $t_{i} := |x_{i}|$, then our problem reformulates as follows:
$$t_{1} + t_{2} + ldots + t_{n} rightarrow text{max}$$
$$t_{1}^{2} + t_{2}^{2} + ldots + t_{n}^{2} = 1$$
$$t_{i} geq 0, forall i = 1, ldots, n$$
The Lagrangian for the problem is:
$$L = (t_{1} + ldots + t_{n}) - lambda (t_{1}^{2} + ldots + t_{n}^{2} - 1)$$
and $lambda$ stays for the lagrange multiplier.
The necessary extremum condition implies:
$$frac{partial L}{partial t_{i}} := 1 - lambda(2t_{i}) = 0$$
thus $t_{i} = frac{1}{2 lambda}$. Since $t_{i} geq 0$ it follows that $lambda > 0$.
The stationary point is $x = (frac{1}{2 lambda}, ldots, frac{1}{2 lambda})$ and we shall find the lambda such that the solution satisfy the second condition in the problem above.
$||x||_{2} = 1$ is equivalent to
$$ n cdot frac{1}{4 lambda^{2}} = 1$$ from which we get
$lambda = frac{sqrt{n}}{2}$
(note that we shall choose it positive due to the restrictions mentioned above)
Thus $t_{i} = frac{1}{sqrt{n}}$ and the maximum equals $$text{max} = n cdot frac{1}{sqrt{n}} = sqrt{n}$$
$endgroup$
1
$begingroup$
Hi, how does $n cdot 1/n = sqrt{n}$ ? Also, nice alternative thinking but that's a bit off the road of functinal analysis.
$endgroup$
– Rebellos
Dec 16 '18 at 21:16
$begingroup$
@Rebellos i've made a mistake, please, check the answer for the updates
$endgroup$
– hyperkahler
Dec 16 '18 at 21:25
add a comment |
$begingroup$
I will elaborate on my comment above
Given an operator $T: X rightarrow Y$ where $$X = mathbb{K}^{n}$$
$$Y = l^{1}(mathbb{N})$$ its norm is given by
$$||T||_{op} = sup_{x neq 0}{frac{||Tx||_{1}}{||x||_{2}}} = sup_{||x||_{2} leq 1}{||Tx||_{1}} = sup_{||x||_{2} = 1}{||Tx||_{1}}$$
So we have to maximize $$||Tx||_{1} = |x_{1}| + ldots + |x_{n}|$$ given $$||x||_{2} := (x_{1}^{2} + ldots + x_{n}^{2})^{frac{1}{2}} = 1$$
Let $t_{i} := |x_{i}|$, then our problem reformulates as follows:
$$t_{1} + t_{2} + ldots + t_{n} rightarrow text{max}$$
$$t_{1}^{2} + t_{2}^{2} + ldots + t_{n}^{2} = 1$$
$$t_{i} geq 0, forall i = 1, ldots, n$$
The Lagrangian for the problem is:
$$L = (t_{1} + ldots + t_{n}) - lambda (t_{1}^{2} + ldots + t_{n}^{2} - 1)$$
and $lambda$ stays for the lagrange multiplier.
The necessary extremum condition implies:
$$frac{partial L}{partial t_{i}} := 1 - lambda(2t_{i}) = 0$$
thus $t_{i} = frac{1}{2 lambda}$. Since $t_{i} geq 0$ it follows that $lambda > 0$.
The stationary point is $x = (frac{1}{2 lambda}, ldots, frac{1}{2 lambda})$ and we shall find the lambda such that the solution satisfy the second condition in the problem above.
$||x||_{2} = 1$ is equivalent to
$$ n cdot frac{1}{4 lambda^{2}} = 1$$ from which we get
$lambda = frac{sqrt{n}}{2}$
(note that we shall choose it positive due to the restrictions mentioned above)
Thus $t_{i} = frac{1}{sqrt{n}}$ and the maximum equals $$text{max} = n cdot frac{1}{sqrt{n}} = sqrt{n}$$
$endgroup$
I will elaborate on my comment above
Given an operator $T: X rightarrow Y$ where $$X = mathbb{K}^{n}$$
$$Y = l^{1}(mathbb{N})$$ its norm is given by
$$||T||_{op} = sup_{x neq 0}{frac{||Tx||_{1}}{||x||_{2}}} = sup_{||x||_{2} leq 1}{||Tx||_{1}} = sup_{||x||_{2} = 1}{||Tx||_{1}}$$
So we have to maximize $$||Tx||_{1} = |x_{1}| + ldots + |x_{n}|$$ given $$||x||_{2} := (x_{1}^{2} + ldots + x_{n}^{2})^{frac{1}{2}} = 1$$
Let $t_{i} := |x_{i}|$, then our problem reformulates as follows:
$$t_{1} + t_{2} + ldots + t_{n} rightarrow text{max}$$
$$t_{1}^{2} + t_{2}^{2} + ldots + t_{n}^{2} = 1$$
$$t_{i} geq 0, forall i = 1, ldots, n$$
The Lagrangian for the problem is:
$$L = (t_{1} + ldots + t_{n}) - lambda (t_{1}^{2} + ldots + t_{n}^{2} - 1)$$
and $lambda$ stays for the lagrange multiplier.
The necessary extremum condition implies:
$$frac{partial L}{partial t_{i}} := 1 - lambda(2t_{i}) = 0$$
thus $t_{i} = frac{1}{2 lambda}$. Since $t_{i} geq 0$ it follows that $lambda > 0$.
The stationary point is $x = (frac{1}{2 lambda}, ldots, frac{1}{2 lambda})$ and we shall find the lambda such that the solution satisfy the second condition in the problem above.
$||x||_{2} = 1$ is equivalent to
$$ n cdot frac{1}{4 lambda^{2}} = 1$$ from which we get
$lambda = frac{sqrt{n}}{2}$
(note that we shall choose it positive due to the restrictions mentioned above)
Thus $t_{i} = frac{1}{sqrt{n}}$ and the maximum equals $$text{max} = n cdot frac{1}{sqrt{n}} = sqrt{n}$$
edited Dec 16 '18 at 21:24
answered Dec 16 '18 at 20:52
hyperkahlerhyperkahler
1,483714
1,483714
1
$begingroup$
Hi, how does $n cdot 1/n = sqrt{n}$ ? Also, nice alternative thinking but that's a bit off the road of functinal analysis.
$endgroup$
– Rebellos
Dec 16 '18 at 21:16
$begingroup$
@Rebellos i've made a mistake, please, check the answer for the updates
$endgroup$
– hyperkahler
Dec 16 '18 at 21:25
add a comment |
1
$begingroup$
Hi, how does $n cdot 1/n = sqrt{n}$ ? Also, nice alternative thinking but that's a bit off the road of functinal analysis.
$endgroup$
– Rebellos
Dec 16 '18 at 21:16
$begingroup$
@Rebellos i've made a mistake, please, check the answer for the updates
$endgroup$
– hyperkahler
Dec 16 '18 at 21:25
1
1
$begingroup$
Hi, how does $n cdot 1/n = sqrt{n}$ ? Also, nice alternative thinking but that's a bit off the road of functinal analysis.
$endgroup$
– Rebellos
Dec 16 '18 at 21:16
$begingroup$
Hi, how does $n cdot 1/n = sqrt{n}$ ? Also, nice alternative thinking but that's a bit off the road of functinal analysis.
$endgroup$
– Rebellos
Dec 16 '18 at 21:16
$begingroup$
@Rebellos i've made a mistake, please, check the answer for the updates
$endgroup$
– hyperkahler
Dec 16 '18 at 21:25
$begingroup$
@Rebellos i've made a mistake, please, check the answer for the updates
$endgroup$
– hyperkahler
Dec 16 '18 at 21:25
add a comment |
$begingroup$
Using Cauchy-Schwarz inequality, we have
$$
sum_{i=1}^nleftlvert x_irightrvert=sum_{i=1}^nleftlvert x_irightrvertcdot 1leqslant left(sum_{i=1}^nx_i^2right)^{1/2}left(sum_{i=1}^n1right)^{1/2}=sqrt nleft(sum_{i=1}^nx_i^2right)^{1/2}
$$
hence $leftlVert TrightrVertleqslant sqrt n$.
For the opposite inequality, look at the case where $x_i=1$ for all $iin{1,dots,n}$.
$endgroup$
add a comment |
$begingroup$
Using Cauchy-Schwarz inequality, we have
$$
sum_{i=1}^nleftlvert x_irightrvert=sum_{i=1}^nleftlvert x_irightrvertcdot 1leqslant left(sum_{i=1}^nx_i^2right)^{1/2}left(sum_{i=1}^n1right)^{1/2}=sqrt nleft(sum_{i=1}^nx_i^2right)^{1/2}
$$
hence $leftlVert TrightrVertleqslant sqrt n$.
For the opposite inequality, look at the case where $x_i=1$ for all $iin{1,dots,n}$.
$endgroup$
add a comment |
$begingroup$
Using Cauchy-Schwarz inequality, we have
$$
sum_{i=1}^nleftlvert x_irightrvert=sum_{i=1}^nleftlvert x_irightrvertcdot 1leqslant left(sum_{i=1}^nx_i^2right)^{1/2}left(sum_{i=1}^n1right)^{1/2}=sqrt nleft(sum_{i=1}^nx_i^2right)^{1/2}
$$
hence $leftlVert TrightrVertleqslant sqrt n$.
For the opposite inequality, look at the case where $x_i=1$ for all $iin{1,dots,n}$.
$endgroup$
Using Cauchy-Schwarz inequality, we have
$$
sum_{i=1}^nleftlvert x_irightrvert=sum_{i=1}^nleftlvert x_irightrvertcdot 1leqslant left(sum_{i=1}^nx_i^2right)^{1/2}left(sum_{i=1}^n1right)^{1/2}=sqrt nleft(sum_{i=1}^nx_i^2right)^{1/2}
$$
hence $leftlVert TrightrVertleqslant sqrt n$.
For the opposite inequality, look at the case where $x_i=1$ for all $iin{1,dots,n}$.
edited Dec 18 '18 at 15:41
answered Dec 18 '18 at 10:56
Davide GiraudoDavide Giraudo
127k16151264
127k16151264
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3043100%2foperator-norm-ell-2-to-ell-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
I don't think that it's a good approach, but you can use the fact that $||T|| = sup_{x: ||x||_{2} = 1} {||Tx||_{1}}$ and apply Lagrange multipliers then. In other words you shall find $|x_{1}| + ldots + |x_{n}| rightarrow text{max}$, while $|x_{1}|^{2} + ldots |x_{n}|^{2} = 1$
$endgroup$
– hyperkahler
Dec 16 '18 at 20:30
$begingroup$
I am tried around a lot. I have never worked with Lagrange multiplier, but $||T∥_2 = sup limits_{∥x∥_2 = 1} ∥Tx ||_1 $.
$endgroup$
– Anna Schmitz
Dec 16 '18 at 20:38