Continuous function and Lp norm
$begingroup$
On the vector space $C([0,1])$ of all continuous functions $f : [0,1] to K$ consider the $p$-norm $$|f|_p =left(int_0^1 |f(t)|^p dtright)^{frac{1}{p}},$$ $f in C([0,1])$, where $1 le p < infty$, as well as the uniform norm $|f|_{infty} = sup_{tin[0,1]}|f(t)|$.
I try to show $|f|_p leq |f|_infty$ for all $f in C([0,1])$ and that $(C([0,1]),|·|_p)$ is not complete.
Can please someone help? I am thinking the first part could be releated to the Minkowski inequality.
functional-analysis lp-spaces
$endgroup$
add a comment |
$begingroup$
On the vector space $C([0,1])$ of all continuous functions $f : [0,1] to K$ consider the $p$-norm $$|f|_p =left(int_0^1 |f(t)|^p dtright)^{frac{1}{p}},$$ $f in C([0,1])$, where $1 le p < infty$, as well as the uniform norm $|f|_{infty} = sup_{tin[0,1]}|f(t)|$.
I try to show $|f|_p leq |f|_infty$ for all $f in C([0,1])$ and that $(C([0,1]),|·|_p)$ is not complete.
Can please someone help? I am thinking the first part could be releated to the Minkowski inequality.
functional-analysis lp-spaces
$endgroup$
$begingroup$
What is $K$? Presumably, it is either $mathbb{C}$ or $mathbb{R}$, but it would be good to specify this.
$endgroup$
– Xander Henderson
Dec 16 '18 at 20:52
add a comment |
$begingroup$
On the vector space $C([0,1])$ of all continuous functions $f : [0,1] to K$ consider the $p$-norm $$|f|_p =left(int_0^1 |f(t)|^p dtright)^{frac{1}{p}},$$ $f in C([0,1])$, where $1 le p < infty$, as well as the uniform norm $|f|_{infty} = sup_{tin[0,1]}|f(t)|$.
I try to show $|f|_p leq |f|_infty$ for all $f in C([0,1])$ and that $(C([0,1]),|·|_p)$ is not complete.
Can please someone help? I am thinking the first part could be releated to the Minkowski inequality.
functional-analysis lp-spaces
$endgroup$
On the vector space $C([0,1])$ of all continuous functions $f : [0,1] to K$ consider the $p$-norm $$|f|_p =left(int_0^1 |f(t)|^p dtright)^{frac{1}{p}},$$ $f in C([0,1])$, where $1 le p < infty$, as well as the uniform norm $|f|_{infty} = sup_{tin[0,1]}|f(t)|$.
I try to show $|f|_p leq |f|_infty$ for all $f in C([0,1])$ and that $(C([0,1]),|·|_p)$ is not complete.
Can please someone help? I am thinking the first part could be releated to the Minkowski inequality.
functional-analysis lp-spaces
functional-analysis lp-spaces
edited Dec 16 '18 at 20:51
Xander Henderson
14.6k103555
14.6k103555
asked Dec 16 '18 at 20:49
Anna SchmitzAnna Schmitz
917
917
$begingroup$
What is $K$? Presumably, it is either $mathbb{C}$ or $mathbb{R}$, but it would be good to specify this.
$endgroup$
– Xander Henderson
Dec 16 '18 at 20:52
add a comment |
$begingroup$
What is $K$? Presumably, it is either $mathbb{C}$ or $mathbb{R}$, but it would be good to specify this.
$endgroup$
– Xander Henderson
Dec 16 '18 at 20:52
$begingroup$
What is $K$? Presumably, it is either $mathbb{C}$ or $mathbb{R}$, but it would be good to specify this.
$endgroup$
– Xander Henderson
Dec 16 '18 at 20:52
$begingroup$
What is $K$? Presumably, it is either $mathbb{C}$ or $mathbb{R}$, but it would be good to specify this.
$endgroup$
– Xander Henderson
Dec 16 '18 at 20:52
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Since $|f(x)|leq sup_{[0,1]}|f|$ for all $xin [0,1]$,
$$int_0^1|f(x)|^pdxleq (sup_{[0,1]}|f|)^pint_0^1dx=|f|_infty ^p.$$
Therefore $$|f|_{p}=sqrt[p]{int_0^1|f(x)|^pdx}leq |f|_{infty }$$
$endgroup$
add a comment |
$begingroup$
For the second part, consider for example
$$ f_n(x) = tanh left(n(x - 1/2)right).$$
As $n to infty$, $f_n to g$ in $L^p$ if $p < infty$, where
$$ g(x) = begin{cases} & -1 quad text{if} , x leq 1/2 \
& 1 quad text{if} , x > 1/2 end{cases},$$
but $g notin C([0,1])$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3043138%2fcontinuous-function-and-lp-norm%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Since $|f(x)|leq sup_{[0,1]}|f|$ for all $xin [0,1]$,
$$int_0^1|f(x)|^pdxleq (sup_{[0,1]}|f|)^pint_0^1dx=|f|_infty ^p.$$
Therefore $$|f|_{p}=sqrt[p]{int_0^1|f(x)|^pdx}leq |f|_{infty }$$
$endgroup$
add a comment |
$begingroup$
Since $|f(x)|leq sup_{[0,1]}|f|$ for all $xin [0,1]$,
$$int_0^1|f(x)|^pdxleq (sup_{[0,1]}|f|)^pint_0^1dx=|f|_infty ^p.$$
Therefore $$|f|_{p}=sqrt[p]{int_0^1|f(x)|^pdx}leq |f|_{infty }$$
$endgroup$
add a comment |
$begingroup$
Since $|f(x)|leq sup_{[0,1]}|f|$ for all $xin [0,1]$,
$$int_0^1|f(x)|^pdxleq (sup_{[0,1]}|f|)^pint_0^1dx=|f|_infty ^p.$$
Therefore $$|f|_{p}=sqrt[p]{int_0^1|f(x)|^pdx}leq |f|_{infty }$$
$endgroup$
Since $|f(x)|leq sup_{[0,1]}|f|$ for all $xin [0,1]$,
$$int_0^1|f(x)|^pdxleq (sup_{[0,1]}|f|)^pint_0^1dx=|f|_infty ^p.$$
Therefore $$|f|_{p}=sqrt[p]{int_0^1|f(x)|^pdx}leq |f|_{infty }$$
answered Dec 16 '18 at 20:51
NewMathNewMath
4059
4059
add a comment |
add a comment |
$begingroup$
For the second part, consider for example
$$ f_n(x) = tanh left(n(x - 1/2)right).$$
As $n to infty$, $f_n to g$ in $L^p$ if $p < infty$, where
$$ g(x) = begin{cases} & -1 quad text{if} , x leq 1/2 \
& 1 quad text{if} , x > 1/2 end{cases},$$
but $g notin C([0,1])$.
$endgroup$
add a comment |
$begingroup$
For the second part, consider for example
$$ f_n(x) = tanh left(n(x - 1/2)right).$$
As $n to infty$, $f_n to g$ in $L^p$ if $p < infty$, where
$$ g(x) = begin{cases} & -1 quad text{if} , x leq 1/2 \
& 1 quad text{if} , x > 1/2 end{cases},$$
but $g notin C([0,1])$.
$endgroup$
add a comment |
$begingroup$
For the second part, consider for example
$$ f_n(x) = tanh left(n(x - 1/2)right).$$
As $n to infty$, $f_n to g$ in $L^p$ if $p < infty$, where
$$ g(x) = begin{cases} & -1 quad text{if} , x leq 1/2 \
& 1 quad text{if} , x > 1/2 end{cases},$$
but $g notin C([0,1])$.
$endgroup$
For the second part, consider for example
$$ f_n(x) = tanh left(n(x - 1/2)right).$$
As $n to infty$, $f_n to g$ in $L^p$ if $p < infty$, where
$$ g(x) = begin{cases} & -1 quad text{if} , x leq 1/2 \
& 1 quad text{if} , x > 1/2 end{cases},$$
but $g notin C([0,1])$.
answered Dec 16 '18 at 20:57
Roberto RastapopoulosRoberto Rastapopoulos
928425
928425
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3043138%2fcontinuous-function-and-lp-norm%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
What is $K$? Presumably, it is either $mathbb{C}$ or $mathbb{R}$, but it would be good to specify this.
$endgroup$
– Xander Henderson
Dec 16 '18 at 20:52