Greater of the angles $alpha=2tan^{-1}(2sqrt{2}-1)$, $beta=3sin^{-1}frac{1}{3}+sin^{-1}frac{3}{5}$












2












$begingroup$



Find the greater of the two angles $alpha=2tan^{-1}(2sqrt{2}-1)$ and $beta=3sin^{-1}dfrac{1}{3}+sin^{-1}dfrac{3}{5}$




My Attempt
$$
alpha=2tan^{-1}(2sqrt{2}-1)=2tan^{-1}(1.82)>2tan^{-1}sqrt{3}=2.frac{pi}{3}\
implies boxed{alpha>frac{2pi}{3}=0.67pi}\
beta=3sin^{-1}dfrac{1}{3}+sin^{-1}dfrac{3}{5}=3sin^{-1}(0.33)+sin^{-1}(0.6)\
=sin^{-1}(0.8)+sin^{-1}(0.6)<sin^{-1}(1)+sin^{-1}(0.7=1/sqrt{2})\
boxed{beta<frac{pi}{2}+frac{pi}{4}=frac{3pi}{4}=0.75pi}
$$



I am stuck with the above result which does not seem to give enough information to decide which one is greater, wht's the easiest way to solve this ?










share|cite|improve this question









$endgroup$

















    2












    $begingroup$



    Find the greater of the two angles $alpha=2tan^{-1}(2sqrt{2}-1)$ and $beta=3sin^{-1}dfrac{1}{3}+sin^{-1}dfrac{3}{5}$




    My Attempt
    $$
    alpha=2tan^{-1}(2sqrt{2}-1)=2tan^{-1}(1.82)>2tan^{-1}sqrt{3}=2.frac{pi}{3}\
    implies boxed{alpha>frac{2pi}{3}=0.67pi}\
    beta=3sin^{-1}dfrac{1}{3}+sin^{-1}dfrac{3}{5}=3sin^{-1}(0.33)+sin^{-1}(0.6)\
    =sin^{-1}(0.8)+sin^{-1}(0.6)<sin^{-1}(1)+sin^{-1}(0.7=1/sqrt{2})\
    boxed{beta<frac{pi}{2}+frac{pi}{4}=frac{3pi}{4}=0.75pi}
    $$



    I am stuck with the above result which does not seem to give enough information to decide which one is greater, wht's the easiest way to solve this ?










    share|cite|improve this question









    $endgroup$















      2












      2








      2


      1



      $begingroup$



      Find the greater of the two angles $alpha=2tan^{-1}(2sqrt{2}-1)$ and $beta=3sin^{-1}dfrac{1}{3}+sin^{-1}dfrac{3}{5}$




      My Attempt
      $$
      alpha=2tan^{-1}(2sqrt{2}-1)=2tan^{-1}(1.82)>2tan^{-1}sqrt{3}=2.frac{pi}{3}\
      implies boxed{alpha>frac{2pi}{3}=0.67pi}\
      beta=3sin^{-1}dfrac{1}{3}+sin^{-1}dfrac{3}{5}=3sin^{-1}(0.33)+sin^{-1}(0.6)\
      =sin^{-1}(0.8)+sin^{-1}(0.6)<sin^{-1}(1)+sin^{-1}(0.7=1/sqrt{2})\
      boxed{beta<frac{pi}{2}+frac{pi}{4}=frac{3pi}{4}=0.75pi}
      $$



      I am stuck with the above result which does not seem to give enough information to decide which one is greater, wht's the easiest way to solve this ?










      share|cite|improve this question









      $endgroup$





      Find the greater of the two angles $alpha=2tan^{-1}(2sqrt{2}-1)$ and $beta=3sin^{-1}dfrac{1}{3}+sin^{-1}dfrac{3}{5}$




      My Attempt
      $$
      alpha=2tan^{-1}(2sqrt{2}-1)=2tan^{-1}(1.82)>2tan^{-1}sqrt{3}=2.frac{pi}{3}\
      implies boxed{alpha>frac{2pi}{3}=0.67pi}\
      beta=3sin^{-1}dfrac{1}{3}+sin^{-1}dfrac{3}{5}=3sin^{-1}(0.33)+sin^{-1}(0.6)\
      =sin^{-1}(0.8)+sin^{-1}(0.6)<sin^{-1}(1)+sin^{-1}(0.7=1/sqrt{2})\
      boxed{beta<frac{pi}{2}+frac{pi}{4}=frac{3pi}{4}=0.75pi}
      $$



      I am stuck with the above result which does not seem to give enough information to decide which one is greater, wht's the easiest way to solve this ?







      trigonometry maxima-minima inverse-function






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 16 '18 at 20:45









      ss1729ss1729

      1,9721923




      1,9721923






















          1 Answer
          1






          active

          oldest

          votes


















          2












          $begingroup$

          Note that $sqrt{2}approx1.414$.



          $(2sqrt{2}-1)^2=8-4sqrt{2}+1=9-4sqrt{2}>3Leftrightarrow6>4sqrt{2}Leftrightarrow $ after raising to the second power $Leftrightarrow 36>32$ which is true and $2sqrt{2}-1>sqrt{3}$



          We know that $tandfrac{pi}{3}=sqrt{3}$, we get that $(2sqrt{2}-1)>tandfrac{pi}{3}$, then $2tan^{-1}(2sqrt{2}-1)>dfrac{2pi}{3}$, because the inverse of the tangent is an increasing function.



          So, $alpha>dfrac{2pi}{3}$



          Note that $sin3theta=3sintheta-4sin^2theta$, then $3theta=sin^{-1}[3sintheta-4sin^3theta]$.



          We have that $theta=sin^{-1}dfrac13$ and $sintheta=dfrac13$



          So, $$beta=3sin^{-1}dfrac13+sin^{-1}dfrac35$$
          $$=sin^{-1}left[3left(dfrac13right)-4left(dfrac13right)^3right]+sin^{-1}dfrac35$$
          $$=sin^{-1}dfrac{23}{27}+sin^{-1}dfrac{3}{5}$$



          Note that $dfrac{23}{27}<dfrac{sqrt{3}}{2}$ and $dfrac35<dfrac{sqrt{3}}{2}$, because $(23cdot2)^2<(27sqrt{3})^2$ and $(3cdot2)^2<(5sqrt{3})^2$, which is equivalent to $2116<2187$ and $36<75$ which is true.



          So, $sin^{-1}dfrac{23}{27}+sin^{-1}dfrac35<sin^{-1}dfrac{sqrt{3}}{2}+sin^{-1}dfrac{sqrt{3}}{2}=dfrac{pi}{3}+dfrac{pi}{3}=dfrac{2pi}{3}$, because the inverse of the sine function is strictly increasing.



          Therefore, $$alpha>dfrac{2pi}{3}, beta<dfrac{2pi}{3}$$
          $$mbox{So, }alpha>beta$$






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3043134%2fgreater-of-the-angles-alpha-2-tan-12-sqrt2-1-beta-3-sin-1-frac1%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2












            $begingroup$

            Note that $sqrt{2}approx1.414$.



            $(2sqrt{2}-1)^2=8-4sqrt{2}+1=9-4sqrt{2}>3Leftrightarrow6>4sqrt{2}Leftrightarrow $ after raising to the second power $Leftrightarrow 36>32$ which is true and $2sqrt{2}-1>sqrt{3}$



            We know that $tandfrac{pi}{3}=sqrt{3}$, we get that $(2sqrt{2}-1)>tandfrac{pi}{3}$, then $2tan^{-1}(2sqrt{2}-1)>dfrac{2pi}{3}$, because the inverse of the tangent is an increasing function.



            So, $alpha>dfrac{2pi}{3}$



            Note that $sin3theta=3sintheta-4sin^2theta$, then $3theta=sin^{-1}[3sintheta-4sin^3theta]$.



            We have that $theta=sin^{-1}dfrac13$ and $sintheta=dfrac13$



            So, $$beta=3sin^{-1}dfrac13+sin^{-1}dfrac35$$
            $$=sin^{-1}left[3left(dfrac13right)-4left(dfrac13right)^3right]+sin^{-1}dfrac35$$
            $$=sin^{-1}dfrac{23}{27}+sin^{-1}dfrac{3}{5}$$



            Note that $dfrac{23}{27}<dfrac{sqrt{3}}{2}$ and $dfrac35<dfrac{sqrt{3}}{2}$, because $(23cdot2)^2<(27sqrt{3})^2$ and $(3cdot2)^2<(5sqrt{3})^2$, which is equivalent to $2116<2187$ and $36<75$ which is true.



            So, $sin^{-1}dfrac{23}{27}+sin^{-1}dfrac35<sin^{-1}dfrac{sqrt{3}}{2}+sin^{-1}dfrac{sqrt{3}}{2}=dfrac{pi}{3}+dfrac{pi}{3}=dfrac{2pi}{3}$, because the inverse of the sine function is strictly increasing.



            Therefore, $$alpha>dfrac{2pi}{3}, beta<dfrac{2pi}{3}$$
            $$mbox{So, }alpha>beta$$






            share|cite|improve this answer









            $endgroup$


















              2












              $begingroup$

              Note that $sqrt{2}approx1.414$.



              $(2sqrt{2}-1)^2=8-4sqrt{2}+1=9-4sqrt{2}>3Leftrightarrow6>4sqrt{2}Leftrightarrow $ after raising to the second power $Leftrightarrow 36>32$ which is true and $2sqrt{2}-1>sqrt{3}$



              We know that $tandfrac{pi}{3}=sqrt{3}$, we get that $(2sqrt{2}-1)>tandfrac{pi}{3}$, then $2tan^{-1}(2sqrt{2}-1)>dfrac{2pi}{3}$, because the inverse of the tangent is an increasing function.



              So, $alpha>dfrac{2pi}{3}$



              Note that $sin3theta=3sintheta-4sin^2theta$, then $3theta=sin^{-1}[3sintheta-4sin^3theta]$.



              We have that $theta=sin^{-1}dfrac13$ and $sintheta=dfrac13$



              So, $$beta=3sin^{-1}dfrac13+sin^{-1}dfrac35$$
              $$=sin^{-1}left[3left(dfrac13right)-4left(dfrac13right)^3right]+sin^{-1}dfrac35$$
              $$=sin^{-1}dfrac{23}{27}+sin^{-1}dfrac{3}{5}$$



              Note that $dfrac{23}{27}<dfrac{sqrt{3}}{2}$ and $dfrac35<dfrac{sqrt{3}}{2}$, because $(23cdot2)^2<(27sqrt{3})^2$ and $(3cdot2)^2<(5sqrt{3})^2$, which is equivalent to $2116<2187$ and $36<75$ which is true.



              So, $sin^{-1}dfrac{23}{27}+sin^{-1}dfrac35<sin^{-1}dfrac{sqrt{3}}{2}+sin^{-1}dfrac{sqrt{3}}{2}=dfrac{pi}{3}+dfrac{pi}{3}=dfrac{2pi}{3}$, because the inverse of the sine function is strictly increasing.



              Therefore, $$alpha>dfrac{2pi}{3}, beta<dfrac{2pi}{3}$$
              $$mbox{So, }alpha>beta$$






              share|cite|improve this answer









              $endgroup$
















                2












                2








                2





                $begingroup$

                Note that $sqrt{2}approx1.414$.



                $(2sqrt{2}-1)^2=8-4sqrt{2}+1=9-4sqrt{2}>3Leftrightarrow6>4sqrt{2}Leftrightarrow $ after raising to the second power $Leftrightarrow 36>32$ which is true and $2sqrt{2}-1>sqrt{3}$



                We know that $tandfrac{pi}{3}=sqrt{3}$, we get that $(2sqrt{2}-1)>tandfrac{pi}{3}$, then $2tan^{-1}(2sqrt{2}-1)>dfrac{2pi}{3}$, because the inverse of the tangent is an increasing function.



                So, $alpha>dfrac{2pi}{3}$



                Note that $sin3theta=3sintheta-4sin^2theta$, then $3theta=sin^{-1}[3sintheta-4sin^3theta]$.



                We have that $theta=sin^{-1}dfrac13$ and $sintheta=dfrac13$



                So, $$beta=3sin^{-1}dfrac13+sin^{-1}dfrac35$$
                $$=sin^{-1}left[3left(dfrac13right)-4left(dfrac13right)^3right]+sin^{-1}dfrac35$$
                $$=sin^{-1}dfrac{23}{27}+sin^{-1}dfrac{3}{5}$$



                Note that $dfrac{23}{27}<dfrac{sqrt{3}}{2}$ and $dfrac35<dfrac{sqrt{3}}{2}$, because $(23cdot2)^2<(27sqrt{3})^2$ and $(3cdot2)^2<(5sqrt{3})^2$, which is equivalent to $2116<2187$ and $36<75$ which is true.



                So, $sin^{-1}dfrac{23}{27}+sin^{-1}dfrac35<sin^{-1}dfrac{sqrt{3}}{2}+sin^{-1}dfrac{sqrt{3}}{2}=dfrac{pi}{3}+dfrac{pi}{3}=dfrac{2pi}{3}$, because the inverse of the sine function is strictly increasing.



                Therefore, $$alpha>dfrac{2pi}{3}, beta<dfrac{2pi}{3}$$
                $$mbox{So, }alpha>beta$$






                share|cite|improve this answer









                $endgroup$



                Note that $sqrt{2}approx1.414$.



                $(2sqrt{2}-1)^2=8-4sqrt{2}+1=9-4sqrt{2}>3Leftrightarrow6>4sqrt{2}Leftrightarrow $ after raising to the second power $Leftrightarrow 36>32$ which is true and $2sqrt{2}-1>sqrt{3}$



                We know that $tandfrac{pi}{3}=sqrt{3}$, we get that $(2sqrt{2}-1)>tandfrac{pi}{3}$, then $2tan^{-1}(2sqrt{2}-1)>dfrac{2pi}{3}$, because the inverse of the tangent is an increasing function.



                So, $alpha>dfrac{2pi}{3}$



                Note that $sin3theta=3sintheta-4sin^2theta$, then $3theta=sin^{-1}[3sintheta-4sin^3theta]$.



                We have that $theta=sin^{-1}dfrac13$ and $sintheta=dfrac13$



                So, $$beta=3sin^{-1}dfrac13+sin^{-1}dfrac35$$
                $$=sin^{-1}left[3left(dfrac13right)-4left(dfrac13right)^3right]+sin^{-1}dfrac35$$
                $$=sin^{-1}dfrac{23}{27}+sin^{-1}dfrac{3}{5}$$



                Note that $dfrac{23}{27}<dfrac{sqrt{3}}{2}$ and $dfrac35<dfrac{sqrt{3}}{2}$, because $(23cdot2)^2<(27sqrt{3})^2$ and $(3cdot2)^2<(5sqrt{3})^2$, which is equivalent to $2116<2187$ and $36<75$ which is true.



                So, $sin^{-1}dfrac{23}{27}+sin^{-1}dfrac35<sin^{-1}dfrac{sqrt{3}}{2}+sin^{-1}dfrac{sqrt{3}}{2}=dfrac{pi}{3}+dfrac{pi}{3}=dfrac{2pi}{3}$, because the inverse of the sine function is strictly increasing.



                Therefore, $$alpha>dfrac{2pi}{3}, beta<dfrac{2pi}{3}$$
                $$mbox{So, }alpha>beta$$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Dec 16 '18 at 21:57









                Key FlexKey Flex

                8,28261233




                8,28261233






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3043134%2fgreater-of-the-angles-alpha-2-tan-12-sqrt2-1-beta-3-sin-1-frac1%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Probability when a professor distributes a quiz and homework assignment to a class of n students.

                    Aardman Animations

                    Are they similar matrix