Greater of the angles $alpha=2tan^{-1}(2sqrt{2}-1)$, $beta=3sin^{-1}frac{1}{3}+sin^{-1}frac{3}{5}$
$begingroup$
Find the greater of the two angles $alpha=2tan^{-1}(2sqrt{2}-1)$ and $beta=3sin^{-1}dfrac{1}{3}+sin^{-1}dfrac{3}{5}$
My Attempt
$$
alpha=2tan^{-1}(2sqrt{2}-1)=2tan^{-1}(1.82)>2tan^{-1}sqrt{3}=2.frac{pi}{3}\
implies boxed{alpha>frac{2pi}{3}=0.67pi}\
beta=3sin^{-1}dfrac{1}{3}+sin^{-1}dfrac{3}{5}=3sin^{-1}(0.33)+sin^{-1}(0.6)\
=sin^{-1}(0.8)+sin^{-1}(0.6)<sin^{-1}(1)+sin^{-1}(0.7=1/sqrt{2})\
boxed{beta<frac{pi}{2}+frac{pi}{4}=frac{3pi}{4}=0.75pi}
$$
I am stuck with the above result which does not seem to give enough information to decide which one is greater, wht's the easiest way to solve this ?
trigonometry maxima-minima inverse-function
$endgroup$
add a comment |
$begingroup$
Find the greater of the two angles $alpha=2tan^{-1}(2sqrt{2}-1)$ and $beta=3sin^{-1}dfrac{1}{3}+sin^{-1}dfrac{3}{5}$
My Attempt
$$
alpha=2tan^{-1}(2sqrt{2}-1)=2tan^{-1}(1.82)>2tan^{-1}sqrt{3}=2.frac{pi}{3}\
implies boxed{alpha>frac{2pi}{3}=0.67pi}\
beta=3sin^{-1}dfrac{1}{3}+sin^{-1}dfrac{3}{5}=3sin^{-1}(0.33)+sin^{-1}(0.6)\
=sin^{-1}(0.8)+sin^{-1}(0.6)<sin^{-1}(1)+sin^{-1}(0.7=1/sqrt{2})\
boxed{beta<frac{pi}{2}+frac{pi}{4}=frac{3pi}{4}=0.75pi}
$$
I am stuck with the above result which does not seem to give enough information to decide which one is greater, wht's the easiest way to solve this ?
trigonometry maxima-minima inverse-function
$endgroup$
add a comment |
$begingroup$
Find the greater of the two angles $alpha=2tan^{-1}(2sqrt{2}-1)$ and $beta=3sin^{-1}dfrac{1}{3}+sin^{-1}dfrac{3}{5}$
My Attempt
$$
alpha=2tan^{-1}(2sqrt{2}-1)=2tan^{-1}(1.82)>2tan^{-1}sqrt{3}=2.frac{pi}{3}\
implies boxed{alpha>frac{2pi}{3}=0.67pi}\
beta=3sin^{-1}dfrac{1}{3}+sin^{-1}dfrac{3}{5}=3sin^{-1}(0.33)+sin^{-1}(0.6)\
=sin^{-1}(0.8)+sin^{-1}(0.6)<sin^{-1}(1)+sin^{-1}(0.7=1/sqrt{2})\
boxed{beta<frac{pi}{2}+frac{pi}{4}=frac{3pi}{4}=0.75pi}
$$
I am stuck with the above result which does not seem to give enough information to decide which one is greater, wht's the easiest way to solve this ?
trigonometry maxima-minima inverse-function
$endgroup$
Find the greater of the two angles $alpha=2tan^{-1}(2sqrt{2}-1)$ and $beta=3sin^{-1}dfrac{1}{3}+sin^{-1}dfrac{3}{5}$
My Attempt
$$
alpha=2tan^{-1}(2sqrt{2}-1)=2tan^{-1}(1.82)>2tan^{-1}sqrt{3}=2.frac{pi}{3}\
implies boxed{alpha>frac{2pi}{3}=0.67pi}\
beta=3sin^{-1}dfrac{1}{3}+sin^{-1}dfrac{3}{5}=3sin^{-1}(0.33)+sin^{-1}(0.6)\
=sin^{-1}(0.8)+sin^{-1}(0.6)<sin^{-1}(1)+sin^{-1}(0.7=1/sqrt{2})\
boxed{beta<frac{pi}{2}+frac{pi}{4}=frac{3pi}{4}=0.75pi}
$$
I am stuck with the above result which does not seem to give enough information to decide which one is greater, wht's the easiest way to solve this ?
trigonometry maxima-minima inverse-function
trigonometry maxima-minima inverse-function
asked Dec 16 '18 at 20:45
ss1729ss1729
1,9721923
1,9721923
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Note that $sqrt{2}approx1.414$.
$(2sqrt{2}-1)^2=8-4sqrt{2}+1=9-4sqrt{2}>3Leftrightarrow6>4sqrt{2}Leftrightarrow $ after raising to the second power $Leftrightarrow 36>32$ which is true and $2sqrt{2}-1>sqrt{3}$
We know that $tandfrac{pi}{3}=sqrt{3}$, we get that $(2sqrt{2}-1)>tandfrac{pi}{3}$, then $2tan^{-1}(2sqrt{2}-1)>dfrac{2pi}{3}$, because the inverse of the tangent is an increasing function.
So, $alpha>dfrac{2pi}{3}$
Note that $sin3theta=3sintheta-4sin^2theta$, then $3theta=sin^{-1}[3sintheta-4sin^3theta]$.
We have that $theta=sin^{-1}dfrac13$ and $sintheta=dfrac13$
So, $$beta=3sin^{-1}dfrac13+sin^{-1}dfrac35$$
$$=sin^{-1}left[3left(dfrac13right)-4left(dfrac13right)^3right]+sin^{-1}dfrac35$$
$$=sin^{-1}dfrac{23}{27}+sin^{-1}dfrac{3}{5}$$
Note that $dfrac{23}{27}<dfrac{sqrt{3}}{2}$ and $dfrac35<dfrac{sqrt{3}}{2}$, because $(23cdot2)^2<(27sqrt{3})^2$ and $(3cdot2)^2<(5sqrt{3})^2$, which is equivalent to $2116<2187$ and $36<75$ which is true.
So, $sin^{-1}dfrac{23}{27}+sin^{-1}dfrac35<sin^{-1}dfrac{sqrt{3}}{2}+sin^{-1}dfrac{sqrt{3}}{2}=dfrac{pi}{3}+dfrac{pi}{3}=dfrac{2pi}{3}$, because the inverse of the sine function is strictly increasing.
Therefore, $$alpha>dfrac{2pi}{3}, beta<dfrac{2pi}{3}$$
$$mbox{So, }alpha>beta$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3043134%2fgreater-of-the-angles-alpha-2-tan-12-sqrt2-1-beta-3-sin-1-frac1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Note that $sqrt{2}approx1.414$.
$(2sqrt{2}-1)^2=8-4sqrt{2}+1=9-4sqrt{2}>3Leftrightarrow6>4sqrt{2}Leftrightarrow $ after raising to the second power $Leftrightarrow 36>32$ which is true and $2sqrt{2}-1>sqrt{3}$
We know that $tandfrac{pi}{3}=sqrt{3}$, we get that $(2sqrt{2}-1)>tandfrac{pi}{3}$, then $2tan^{-1}(2sqrt{2}-1)>dfrac{2pi}{3}$, because the inverse of the tangent is an increasing function.
So, $alpha>dfrac{2pi}{3}$
Note that $sin3theta=3sintheta-4sin^2theta$, then $3theta=sin^{-1}[3sintheta-4sin^3theta]$.
We have that $theta=sin^{-1}dfrac13$ and $sintheta=dfrac13$
So, $$beta=3sin^{-1}dfrac13+sin^{-1}dfrac35$$
$$=sin^{-1}left[3left(dfrac13right)-4left(dfrac13right)^3right]+sin^{-1}dfrac35$$
$$=sin^{-1}dfrac{23}{27}+sin^{-1}dfrac{3}{5}$$
Note that $dfrac{23}{27}<dfrac{sqrt{3}}{2}$ and $dfrac35<dfrac{sqrt{3}}{2}$, because $(23cdot2)^2<(27sqrt{3})^2$ and $(3cdot2)^2<(5sqrt{3})^2$, which is equivalent to $2116<2187$ and $36<75$ which is true.
So, $sin^{-1}dfrac{23}{27}+sin^{-1}dfrac35<sin^{-1}dfrac{sqrt{3}}{2}+sin^{-1}dfrac{sqrt{3}}{2}=dfrac{pi}{3}+dfrac{pi}{3}=dfrac{2pi}{3}$, because the inverse of the sine function is strictly increasing.
Therefore, $$alpha>dfrac{2pi}{3}, beta<dfrac{2pi}{3}$$
$$mbox{So, }alpha>beta$$
$endgroup$
add a comment |
$begingroup$
Note that $sqrt{2}approx1.414$.
$(2sqrt{2}-1)^2=8-4sqrt{2}+1=9-4sqrt{2}>3Leftrightarrow6>4sqrt{2}Leftrightarrow $ after raising to the second power $Leftrightarrow 36>32$ which is true and $2sqrt{2}-1>sqrt{3}$
We know that $tandfrac{pi}{3}=sqrt{3}$, we get that $(2sqrt{2}-1)>tandfrac{pi}{3}$, then $2tan^{-1}(2sqrt{2}-1)>dfrac{2pi}{3}$, because the inverse of the tangent is an increasing function.
So, $alpha>dfrac{2pi}{3}$
Note that $sin3theta=3sintheta-4sin^2theta$, then $3theta=sin^{-1}[3sintheta-4sin^3theta]$.
We have that $theta=sin^{-1}dfrac13$ and $sintheta=dfrac13$
So, $$beta=3sin^{-1}dfrac13+sin^{-1}dfrac35$$
$$=sin^{-1}left[3left(dfrac13right)-4left(dfrac13right)^3right]+sin^{-1}dfrac35$$
$$=sin^{-1}dfrac{23}{27}+sin^{-1}dfrac{3}{5}$$
Note that $dfrac{23}{27}<dfrac{sqrt{3}}{2}$ and $dfrac35<dfrac{sqrt{3}}{2}$, because $(23cdot2)^2<(27sqrt{3})^2$ and $(3cdot2)^2<(5sqrt{3})^2$, which is equivalent to $2116<2187$ and $36<75$ which is true.
So, $sin^{-1}dfrac{23}{27}+sin^{-1}dfrac35<sin^{-1}dfrac{sqrt{3}}{2}+sin^{-1}dfrac{sqrt{3}}{2}=dfrac{pi}{3}+dfrac{pi}{3}=dfrac{2pi}{3}$, because the inverse of the sine function is strictly increasing.
Therefore, $$alpha>dfrac{2pi}{3}, beta<dfrac{2pi}{3}$$
$$mbox{So, }alpha>beta$$
$endgroup$
add a comment |
$begingroup$
Note that $sqrt{2}approx1.414$.
$(2sqrt{2}-1)^2=8-4sqrt{2}+1=9-4sqrt{2}>3Leftrightarrow6>4sqrt{2}Leftrightarrow $ after raising to the second power $Leftrightarrow 36>32$ which is true and $2sqrt{2}-1>sqrt{3}$
We know that $tandfrac{pi}{3}=sqrt{3}$, we get that $(2sqrt{2}-1)>tandfrac{pi}{3}$, then $2tan^{-1}(2sqrt{2}-1)>dfrac{2pi}{3}$, because the inverse of the tangent is an increasing function.
So, $alpha>dfrac{2pi}{3}$
Note that $sin3theta=3sintheta-4sin^2theta$, then $3theta=sin^{-1}[3sintheta-4sin^3theta]$.
We have that $theta=sin^{-1}dfrac13$ and $sintheta=dfrac13$
So, $$beta=3sin^{-1}dfrac13+sin^{-1}dfrac35$$
$$=sin^{-1}left[3left(dfrac13right)-4left(dfrac13right)^3right]+sin^{-1}dfrac35$$
$$=sin^{-1}dfrac{23}{27}+sin^{-1}dfrac{3}{5}$$
Note that $dfrac{23}{27}<dfrac{sqrt{3}}{2}$ and $dfrac35<dfrac{sqrt{3}}{2}$, because $(23cdot2)^2<(27sqrt{3})^2$ and $(3cdot2)^2<(5sqrt{3})^2$, which is equivalent to $2116<2187$ and $36<75$ which is true.
So, $sin^{-1}dfrac{23}{27}+sin^{-1}dfrac35<sin^{-1}dfrac{sqrt{3}}{2}+sin^{-1}dfrac{sqrt{3}}{2}=dfrac{pi}{3}+dfrac{pi}{3}=dfrac{2pi}{3}$, because the inverse of the sine function is strictly increasing.
Therefore, $$alpha>dfrac{2pi}{3}, beta<dfrac{2pi}{3}$$
$$mbox{So, }alpha>beta$$
$endgroup$
Note that $sqrt{2}approx1.414$.
$(2sqrt{2}-1)^2=8-4sqrt{2}+1=9-4sqrt{2}>3Leftrightarrow6>4sqrt{2}Leftrightarrow $ after raising to the second power $Leftrightarrow 36>32$ which is true and $2sqrt{2}-1>sqrt{3}$
We know that $tandfrac{pi}{3}=sqrt{3}$, we get that $(2sqrt{2}-1)>tandfrac{pi}{3}$, then $2tan^{-1}(2sqrt{2}-1)>dfrac{2pi}{3}$, because the inverse of the tangent is an increasing function.
So, $alpha>dfrac{2pi}{3}$
Note that $sin3theta=3sintheta-4sin^2theta$, then $3theta=sin^{-1}[3sintheta-4sin^3theta]$.
We have that $theta=sin^{-1}dfrac13$ and $sintheta=dfrac13$
So, $$beta=3sin^{-1}dfrac13+sin^{-1}dfrac35$$
$$=sin^{-1}left[3left(dfrac13right)-4left(dfrac13right)^3right]+sin^{-1}dfrac35$$
$$=sin^{-1}dfrac{23}{27}+sin^{-1}dfrac{3}{5}$$
Note that $dfrac{23}{27}<dfrac{sqrt{3}}{2}$ and $dfrac35<dfrac{sqrt{3}}{2}$, because $(23cdot2)^2<(27sqrt{3})^2$ and $(3cdot2)^2<(5sqrt{3})^2$, which is equivalent to $2116<2187$ and $36<75$ which is true.
So, $sin^{-1}dfrac{23}{27}+sin^{-1}dfrac35<sin^{-1}dfrac{sqrt{3}}{2}+sin^{-1}dfrac{sqrt{3}}{2}=dfrac{pi}{3}+dfrac{pi}{3}=dfrac{2pi}{3}$, because the inverse of the sine function is strictly increasing.
Therefore, $$alpha>dfrac{2pi}{3}, beta<dfrac{2pi}{3}$$
$$mbox{So, }alpha>beta$$
answered Dec 16 '18 at 21:57
Key FlexKey Flex
8,28261233
8,28261233
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3043134%2fgreater-of-the-angles-alpha-2-tan-12-sqrt2-1-beta-3-sin-1-frac1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown