Maximize $det X$, subject to $X_{ii}leq P_i$, where $X>0$
$begingroup$
Given $P_1,P_2,cdots,P_N$.
begin{array}{ll} text{maximize} & det X\ text{subject to} & mathrm X_{ii}leq P_i \forall i=1,2,cdots,nend{array}
$Xinmathbb{R}^{ntimes n}$, $X>0$ (i.e. positive definite).
For $n=2$, maximum is achieved when $X_{ii}=P_i$ and $X$ is diagonal matrix.
Then for $n=3$, Let $X=begin{bmatrix}X_1 & X_2\X_2^T &x_3end{bmatrix}$, where $X_1inmathbb{R}^{2times2}$.
$det(X)=det(X_1)times det(x_3-X_2^TX_1^{-1}X_2)leq det(X_1)times x_3leq P_1P_2P_3$.
Then following same logic my conjecture is $max{ det X}=P_1cdots P_n$, when $X_{ii}=P_i$.
Is it correct? If not, can you please point my mistake or give me counter example? Thanks
optimization determinant positive-definite
$endgroup$
add a comment |
$begingroup$
Given $P_1,P_2,cdots,P_N$.
begin{array}{ll} text{maximize} & det X\ text{subject to} & mathrm X_{ii}leq P_i \forall i=1,2,cdots,nend{array}
$Xinmathbb{R}^{ntimes n}$, $X>0$ (i.e. positive definite).
For $n=2$, maximum is achieved when $X_{ii}=P_i$ and $X$ is diagonal matrix.
Then for $n=3$, Let $X=begin{bmatrix}X_1 & X_2\X_2^T &x_3end{bmatrix}$, where $X_1inmathbb{R}^{2times2}$.
$det(X)=det(X_1)times det(x_3-X_2^TX_1^{-1}X_2)leq det(X_1)times x_3leq P_1P_2P_3$.
Then following same logic my conjecture is $max{ det X}=P_1cdots P_n$, when $X_{ii}=P_i$.
Is it correct? If not, can you please point my mistake or give me counter example? Thanks
optimization determinant positive-definite
$endgroup$
add a comment |
$begingroup$
Given $P_1,P_2,cdots,P_N$.
begin{array}{ll} text{maximize} & det X\ text{subject to} & mathrm X_{ii}leq P_i \forall i=1,2,cdots,nend{array}
$Xinmathbb{R}^{ntimes n}$, $X>0$ (i.e. positive definite).
For $n=2$, maximum is achieved when $X_{ii}=P_i$ and $X$ is diagonal matrix.
Then for $n=3$, Let $X=begin{bmatrix}X_1 & X_2\X_2^T &x_3end{bmatrix}$, where $X_1inmathbb{R}^{2times2}$.
$det(X)=det(X_1)times det(x_3-X_2^TX_1^{-1}X_2)leq det(X_1)times x_3leq P_1P_2P_3$.
Then following same logic my conjecture is $max{ det X}=P_1cdots P_n$, when $X_{ii}=P_i$.
Is it correct? If not, can you please point my mistake or give me counter example? Thanks
optimization determinant positive-definite
$endgroup$
Given $P_1,P_2,cdots,P_N$.
begin{array}{ll} text{maximize} & det X\ text{subject to} & mathrm X_{ii}leq P_i \forall i=1,2,cdots,nend{array}
$Xinmathbb{R}^{ntimes n}$, $X>0$ (i.e. positive definite).
For $n=2$, maximum is achieved when $X_{ii}=P_i$ and $X$ is diagonal matrix.
Then for $n=3$, Let $X=begin{bmatrix}X_1 & X_2\X_2^T &x_3end{bmatrix}$, where $X_1inmathbb{R}^{2times2}$.
$det(X)=det(X_1)times det(x_3-X_2^TX_1^{-1}X_2)leq det(X_1)times x_3leq P_1P_2P_3$.
Then following same logic my conjecture is $max{ det X}=P_1cdots P_n$, when $X_{ii}=P_i$.
Is it correct? If not, can you please point my mistake or give me counter example? Thanks
optimization determinant positive-definite
optimization determinant positive-definite
edited Dec 15 '18 at 3:48
Tianlalu
3,08621038
3,08621038
asked Dec 15 '18 at 3:17
LeeLee
330111
330111
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Your problem is equivalent to maximizing $log det X$ such that $X_{ii} leq P_i$ and $X$ is positive definite. That is convenient, because now you have a convex optimization problem that satisfies the Slater condition, so the KKT conditions are necessary and sufficient. The Lagrangian is
$$L(X,lambda) = logdet X - sum_i lambda_i (X_{ii} - P_i)$$
The derivative of $logdet X$ is $(X^{-1})^T$, so the KKT conditions are:
$$(X^{-1})_{ii} - lambda_i = 0$$
$$(X^{-1})_{ij} = 0 quad (i neq j)$$
$$lambda_i (X_{ii} - P_i)=0$$
$$X_{ii} leq P_i$$
$$lambda geq 0.$$
The point you found satisfies these conditions and is therefore optimal.
$endgroup$
$begingroup$
what if rank$ X< n$? I think in this case these points are not optimal
$endgroup$
– Lee
Dec 18 '18 at 9:24
1
$begingroup$
@Lee a positive definite matrix has full rank.
$endgroup$
– LinAlg
Dec 18 '18 at 15:13
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3040135%2fmaximize-det-x-subject-to-x-ii-leq-p-i-where-x0%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Your problem is equivalent to maximizing $log det X$ such that $X_{ii} leq P_i$ and $X$ is positive definite. That is convenient, because now you have a convex optimization problem that satisfies the Slater condition, so the KKT conditions are necessary and sufficient. The Lagrangian is
$$L(X,lambda) = logdet X - sum_i lambda_i (X_{ii} - P_i)$$
The derivative of $logdet X$ is $(X^{-1})^T$, so the KKT conditions are:
$$(X^{-1})_{ii} - lambda_i = 0$$
$$(X^{-1})_{ij} = 0 quad (i neq j)$$
$$lambda_i (X_{ii} - P_i)=0$$
$$X_{ii} leq P_i$$
$$lambda geq 0.$$
The point you found satisfies these conditions and is therefore optimal.
$endgroup$
$begingroup$
what if rank$ X< n$? I think in this case these points are not optimal
$endgroup$
– Lee
Dec 18 '18 at 9:24
1
$begingroup$
@Lee a positive definite matrix has full rank.
$endgroup$
– LinAlg
Dec 18 '18 at 15:13
add a comment |
$begingroup$
Your problem is equivalent to maximizing $log det X$ such that $X_{ii} leq P_i$ and $X$ is positive definite. That is convenient, because now you have a convex optimization problem that satisfies the Slater condition, so the KKT conditions are necessary and sufficient. The Lagrangian is
$$L(X,lambda) = logdet X - sum_i lambda_i (X_{ii} - P_i)$$
The derivative of $logdet X$ is $(X^{-1})^T$, so the KKT conditions are:
$$(X^{-1})_{ii} - lambda_i = 0$$
$$(X^{-1})_{ij} = 0 quad (i neq j)$$
$$lambda_i (X_{ii} - P_i)=0$$
$$X_{ii} leq P_i$$
$$lambda geq 0.$$
The point you found satisfies these conditions and is therefore optimal.
$endgroup$
$begingroup$
what if rank$ X< n$? I think in this case these points are not optimal
$endgroup$
– Lee
Dec 18 '18 at 9:24
1
$begingroup$
@Lee a positive definite matrix has full rank.
$endgroup$
– LinAlg
Dec 18 '18 at 15:13
add a comment |
$begingroup$
Your problem is equivalent to maximizing $log det X$ such that $X_{ii} leq P_i$ and $X$ is positive definite. That is convenient, because now you have a convex optimization problem that satisfies the Slater condition, so the KKT conditions are necessary and sufficient. The Lagrangian is
$$L(X,lambda) = logdet X - sum_i lambda_i (X_{ii} - P_i)$$
The derivative of $logdet X$ is $(X^{-1})^T$, so the KKT conditions are:
$$(X^{-1})_{ii} - lambda_i = 0$$
$$(X^{-1})_{ij} = 0 quad (i neq j)$$
$$lambda_i (X_{ii} - P_i)=0$$
$$X_{ii} leq P_i$$
$$lambda geq 0.$$
The point you found satisfies these conditions and is therefore optimal.
$endgroup$
Your problem is equivalent to maximizing $log det X$ such that $X_{ii} leq P_i$ and $X$ is positive definite. That is convenient, because now you have a convex optimization problem that satisfies the Slater condition, so the KKT conditions are necessary and sufficient. The Lagrangian is
$$L(X,lambda) = logdet X - sum_i lambda_i (X_{ii} - P_i)$$
The derivative of $logdet X$ is $(X^{-1})^T$, so the KKT conditions are:
$$(X^{-1})_{ii} - lambda_i = 0$$
$$(X^{-1})_{ij} = 0 quad (i neq j)$$
$$lambda_i (X_{ii} - P_i)=0$$
$$X_{ii} leq P_i$$
$$lambda geq 0.$$
The point you found satisfies these conditions and is therefore optimal.
answered Dec 15 '18 at 16:34
LinAlgLinAlg
9,5491521
9,5491521
$begingroup$
what if rank$ X< n$? I think in this case these points are not optimal
$endgroup$
– Lee
Dec 18 '18 at 9:24
1
$begingroup$
@Lee a positive definite matrix has full rank.
$endgroup$
– LinAlg
Dec 18 '18 at 15:13
add a comment |
$begingroup$
what if rank$ X< n$? I think in this case these points are not optimal
$endgroup$
– Lee
Dec 18 '18 at 9:24
1
$begingroup$
@Lee a positive definite matrix has full rank.
$endgroup$
– LinAlg
Dec 18 '18 at 15:13
$begingroup$
what if rank$ X< n$? I think in this case these points are not optimal
$endgroup$
– Lee
Dec 18 '18 at 9:24
$begingroup$
what if rank$ X< n$? I think in this case these points are not optimal
$endgroup$
– Lee
Dec 18 '18 at 9:24
1
1
$begingroup$
@Lee a positive definite matrix has full rank.
$endgroup$
– LinAlg
Dec 18 '18 at 15:13
$begingroup$
@Lee a positive definite matrix has full rank.
$endgroup$
– LinAlg
Dec 18 '18 at 15:13
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3040135%2fmaximize-det-x-subject-to-x-ii-leq-p-i-where-x0%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown