Maximize $det X$, subject to $X_{ii}leq P_i$, where $X>0$












2












$begingroup$


Given $P_1,P_2,cdots,P_N$.



begin{array}{ll} text{maximize} & det X\ text{subject to} & mathrm X_{ii}leq P_i \forall i=1,2,cdots,nend{array}



$Xinmathbb{R}^{ntimes n}$, $X>0$ (i.e. positive definite).



For $n=2$, maximum is achieved when $X_{ii}=P_i$ and $X$ is diagonal matrix.



Then for $n=3$, Let $X=begin{bmatrix}X_1 & X_2\X_2^T &x_3end{bmatrix}$, where $X_1inmathbb{R}^{2times2}$.



$det(X)=det(X_1)times det(x_3-X_2^TX_1^{-1}X_2)leq det(X_1)times x_3leq P_1P_2P_3$.



Then following same logic my conjecture is $max{ det X}=P_1cdots P_n$, when $X_{ii}=P_i$.



Is it correct? If not, can you please point my mistake or give me counter example? Thanks










share|cite|improve this question











$endgroup$

















    2












    $begingroup$


    Given $P_1,P_2,cdots,P_N$.



    begin{array}{ll} text{maximize} & det X\ text{subject to} & mathrm X_{ii}leq P_i \forall i=1,2,cdots,nend{array}



    $Xinmathbb{R}^{ntimes n}$, $X>0$ (i.e. positive definite).



    For $n=2$, maximum is achieved when $X_{ii}=P_i$ and $X$ is diagonal matrix.



    Then for $n=3$, Let $X=begin{bmatrix}X_1 & X_2\X_2^T &x_3end{bmatrix}$, where $X_1inmathbb{R}^{2times2}$.



    $det(X)=det(X_1)times det(x_3-X_2^TX_1^{-1}X_2)leq det(X_1)times x_3leq P_1P_2P_3$.



    Then following same logic my conjecture is $max{ det X}=P_1cdots P_n$, when $X_{ii}=P_i$.



    Is it correct? If not, can you please point my mistake or give me counter example? Thanks










    share|cite|improve this question











    $endgroup$















      2












      2








      2





      $begingroup$


      Given $P_1,P_2,cdots,P_N$.



      begin{array}{ll} text{maximize} & det X\ text{subject to} & mathrm X_{ii}leq P_i \forall i=1,2,cdots,nend{array}



      $Xinmathbb{R}^{ntimes n}$, $X>0$ (i.e. positive definite).



      For $n=2$, maximum is achieved when $X_{ii}=P_i$ and $X$ is diagonal matrix.



      Then for $n=3$, Let $X=begin{bmatrix}X_1 & X_2\X_2^T &x_3end{bmatrix}$, where $X_1inmathbb{R}^{2times2}$.



      $det(X)=det(X_1)times det(x_3-X_2^TX_1^{-1}X_2)leq det(X_1)times x_3leq P_1P_2P_3$.



      Then following same logic my conjecture is $max{ det X}=P_1cdots P_n$, when $X_{ii}=P_i$.



      Is it correct? If not, can you please point my mistake or give me counter example? Thanks










      share|cite|improve this question











      $endgroup$




      Given $P_1,P_2,cdots,P_N$.



      begin{array}{ll} text{maximize} & det X\ text{subject to} & mathrm X_{ii}leq P_i \forall i=1,2,cdots,nend{array}



      $Xinmathbb{R}^{ntimes n}$, $X>0$ (i.e. positive definite).



      For $n=2$, maximum is achieved when $X_{ii}=P_i$ and $X$ is diagonal matrix.



      Then for $n=3$, Let $X=begin{bmatrix}X_1 & X_2\X_2^T &x_3end{bmatrix}$, where $X_1inmathbb{R}^{2times2}$.



      $det(X)=det(X_1)times det(x_3-X_2^TX_1^{-1}X_2)leq det(X_1)times x_3leq P_1P_2P_3$.



      Then following same logic my conjecture is $max{ det X}=P_1cdots P_n$, when $X_{ii}=P_i$.



      Is it correct? If not, can you please point my mistake or give me counter example? Thanks







      optimization determinant positive-definite






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 15 '18 at 3:48









      Tianlalu

      3,08621038




      3,08621038










      asked Dec 15 '18 at 3:17









      LeeLee

      330111




      330111






















          1 Answer
          1






          active

          oldest

          votes


















          2












          $begingroup$

          Your problem is equivalent to maximizing $log det X$ such that $X_{ii} leq P_i$ and $X$ is positive definite. That is convenient, because now you have a convex optimization problem that satisfies the Slater condition, so the KKT conditions are necessary and sufficient. The Lagrangian is
          $$L(X,lambda) = logdet X - sum_i lambda_i (X_{ii} - P_i)$$
          The derivative of $logdet X$ is $(X^{-1})^T$, so the KKT conditions are:
          $$(X^{-1})_{ii} - lambda_i = 0$$
          $$(X^{-1})_{ij} = 0 quad (i neq j)$$
          $$lambda_i (X_{ii} - P_i)=0$$
          $$X_{ii} leq P_i$$
          $$lambda geq 0.$$
          The point you found satisfies these conditions and is therefore optimal.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            what if rank$ X< n$? I think in this case these points are not optimal
            $endgroup$
            – Lee
            Dec 18 '18 at 9:24








          • 1




            $begingroup$
            @Lee a positive definite matrix has full rank.
            $endgroup$
            – LinAlg
            Dec 18 '18 at 15:13











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3040135%2fmaximize-det-x-subject-to-x-ii-leq-p-i-where-x0%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          2












          $begingroup$

          Your problem is equivalent to maximizing $log det X$ such that $X_{ii} leq P_i$ and $X$ is positive definite. That is convenient, because now you have a convex optimization problem that satisfies the Slater condition, so the KKT conditions are necessary and sufficient. The Lagrangian is
          $$L(X,lambda) = logdet X - sum_i lambda_i (X_{ii} - P_i)$$
          The derivative of $logdet X$ is $(X^{-1})^T$, so the KKT conditions are:
          $$(X^{-1})_{ii} - lambda_i = 0$$
          $$(X^{-1})_{ij} = 0 quad (i neq j)$$
          $$lambda_i (X_{ii} - P_i)=0$$
          $$X_{ii} leq P_i$$
          $$lambda geq 0.$$
          The point you found satisfies these conditions and is therefore optimal.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            what if rank$ X< n$? I think in this case these points are not optimal
            $endgroup$
            – Lee
            Dec 18 '18 at 9:24








          • 1




            $begingroup$
            @Lee a positive definite matrix has full rank.
            $endgroup$
            – LinAlg
            Dec 18 '18 at 15:13
















          2












          $begingroup$

          Your problem is equivalent to maximizing $log det X$ such that $X_{ii} leq P_i$ and $X$ is positive definite. That is convenient, because now you have a convex optimization problem that satisfies the Slater condition, so the KKT conditions are necessary and sufficient. The Lagrangian is
          $$L(X,lambda) = logdet X - sum_i lambda_i (X_{ii} - P_i)$$
          The derivative of $logdet X$ is $(X^{-1})^T$, so the KKT conditions are:
          $$(X^{-1})_{ii} - lambda_i = 0$$
          $$(X^{-1})_{ij} = 0 quad (i neq j)$$
          $$lambda_i (X_{ii} - P_i)=0$$
          $$X_{ii} leq P_i$$
          $$lambda geq 0.$$
          The point you found satisfies these conditions and is therefore optimal.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            what if rank$ X< n$? I think in this case these points are not optimal
            $endgroup$
            – Lee
            Dec 18 '18 at 9:24








          • 1




            $begingroup$
            @Lee a positive definite matrix has full rank.
            $endgroup$
            – LinAlg
            Dec 18 '18 at 15:13














          2












          2








          2





          $begingroup$

          Your problem is equivalent to maximizing $log det X$ such that $X_{ii} leq P_i$ and $X$ is positive definite. That is convenient, because now you have a convex optimization problem that satisfies the Slater condition, so the KKT conditions are necessary and sufficient. The Lagrangian is
          $$L(X,lambda) = logdet X - sum_i lambda_i (X_{ii} - P_i)$$
          The derivative of $logdet X$ is $(X^{-1})^T$, so the KKT conditions are:
          $$(X^{-1})_{ii} - lambda_i = 0$$
          $$(X^{-1})_{ij} = 0 quad (i neq j)$$
          $$lambda_i (X_{ii} - P_i)=0$$
          $$X_{ii} leq P_i$$
          $$lambda geq 0.$$
          The point you found satisfies these conditions and is therefore optimal.






          share|cite|improve this answer









          $endgroup$



          Your problem is equivalent to maximizing $log det X$ such that $X_{ii} leq P_i$ and $X$ is positive definite. That is convenient, because now you have a convex optimization problem that satisfies the Slater condition, so the KKT conditions are necessary and sufficient. The Lagrangian is
          $$L(X,lambda) = logdet X - sum_i lambda_i (X_{ii} - P_i)$$
          The derivative of $logdet X$ is $(X^{-1})^T$, so the KKT conditions are:
          $$(X^{-1})_{ii} - lambda_i = 0$$
          $$(X^{-1})_{ij} = 0 quad (i neq j)$$
          $$lambda_i (X_{ii} - P_i)=0$$
          $$X_{ii} leq P_i$$
          $$lambda geq 0.$$
          The point you found satisfies these conditions and is therefore optimal.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Dec 15 '18 at 16:34









          LinAlgLinAlg

          9,5491521




          9,5491521












          • $begingroup$
            what if rank$ X< n$? I think in this case these points are not optimal
            $endgroup$
            – Lee
            Dec 18 '18 at 9:24








          • 1




            $begingroup$
            @Lee a positive definite matrix has full rank.
            $endgroup$
            – LinAlg
            Dec 18 '18 at 15:13


















          • $begingroup$
            what if rank$ X< n$? I think in this case these points are not optimal
            $endgroup$
            – Lee
            Dec 18 '18 at 9:24








          • 1




            $begingroup$
            @Lee a positive definite matrix has full rank.
            $endgroup$
            – LinAlg
            Dec 18 '18 at 15:13
















          $begingroup$
          what if rank$ X< n$? I think in this case these points are not optimal
          $endgroup$
          – Lee
          Dec 18 '18 at 9:24






          $begingroup$
          what if rank$ X< n$? I think in this case these points are not optimal
          $endgroup$
          – Lee
          Dec 18 '18 at 9:24






          1




          1




          $begingroup$
          @Lee a positive definite matrix has full rank.
          $endgroup$
          – LinAlg
          Dec 18 '18 at 15:13




          $begingroup$
          @Lee a positive definite matrix has full rank.
          $endgroup$
          – LinAlg
          Dec 18 '18 at 15:13


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3040135%2fmaximize-det-x-subject-to-x-ii-leq-p-i-where-x0%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Probability when a professor distributes a quiz and homework assignment to a class of n students.

          Aardman Animations

          Are they similar matrix