Limit of sequence $lim limits_{n to infty }(ln n)^{1+frac{(ln(ln n))^{2019}}{ln n}}-frac{sqrt[2018]n}{ln n}$












1












$begingroup$


$lim limits_{n to infty }(ln n)^{1+frac{(ln(ln n))^{2019}}{ln n}}-frac{sqrt[2018]n}{ln n}$



I can show that $lim limits_{n to infty } {frac{(ln(ln n))^{2019}}{ln n}}=0 $, so $lim limits_{n to infty }(ln n)^{1+frac{(ln(ln n))^{2019}}{ln n}}=+infty$



and $lim limits_{n to infty } frac{sqrt[2018]n}{ln n}=-infty$



But I don't know how take it together, and show that $lim limits_{n to infty }a_n=-infty$.



Could someone give me hints?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Are you familiar with Taylor series (as an available tool)?
    $endgroup$
    – Clement C.
    Dec 10 '18 at 21:19












  • $begingroup$
    No, I can't use it :/
    $endgroup$
    – matematiccc
    Dec 10 '18 at 21:21










  • $begingroup$
    Where does this problem come from? Could you write down the source?
    $endgroup$
    – user376343
    Dec 10 '18 at 22:10
















1












$begingroup$


$lim limits_{n to infty }(ln n)^{1+frac{(ln(ln n))^{2019}}{ln n}}-frac{sqrt[2018]n}{ln n}$



I can show that $lim limits_{n to infty } {frac{(ln(ln n))^{2019}}{ln n}}=0 $, so $lim limits_{n to infty }(ln n)^{1+frac{(ln(ln n))^{2019}}{ln n}}=+infty$



and $lim limits_{n to infty } frac{sqrt[2018]n}{ln n}=-infty$



But I don't know how take it together, and show that $lim limits_{n to infty }a_n=-infty$.



Could someone give me hints?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Are you familiar with Taylor series (as an available tool)?
    $endgroup$
    – Clement C.
    Dec 10 '18 at 21:19












  • $begingroup$
    No, I can't use it :/
    $endgroup$
    – matematiccc
    Dec 10 '18 at 21:21










  • $begingroup$
    Where does this problem come from? Could you write down the source?
    $endgroup$
    – user376343
    Dec 10 '18 at 22:10














1












1








1


1



$begingroup$


$lim limits_{n to infty }(ln n)^{1+frac{(ln(ln n))^{2019}}{ln n}}-frac{sqrt[2018]n}{ln n}$



I can show that $lim limits_{n to infty } {frac{(ln(ln n))^{2019}}{ln n}}=0 $, so $lim limits_{n to infty }(ln n)^{1+frac{(ln(ln n))^{2019}}{ln n}}=+infty$



and $lim limits_{n to infty } frac{sqrt[2018]n}{ln n}=-infty$



But I don't know how take it together, and show that $lim limits_{n to infty }a_n=-infty$.



Could someone give me hints?










share|cite|improve this question











$endgroup$




$lim limits_{n to infty }(ln n)^{1+frac{(ln(ln n))^{2019}}{ln n}}-frac{sqrt[2018]n}{ln n}$



I can show that $lim limits_{n to infty } {frac{(ln(ln n))^{2019}}{ln n}}=0 $, so $lim limits_{n to infty }(ln n)^{1+frac{(ln(ln n))^{2019}}{ln n}}=+infty$



and $lim limits_{n to infty } frac{sqrt[2018]n}{ln n}=-infty$



But I don't know how take it together, and show that $lim limits_{n to infty }a_n=-infty$.



Could someone give me hints?







real-analysis sequences-and-series limits limits-without-lhopital






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 10 '18 at 21:11









user376343

3,7383827




3,7383827










asked Dec 10 '18 at 21:05









matematicccmatematiccc

1275




1275












  • $begingroup$
    Are you familiar with Taylor series (as an available tool)?
    $endgroup$
    – Clement C.
    Dec 10 '18 at 21:19












  • $begingroup$
    No, I can't use it :/
    $endgroup$
    – matematiccc
    Dec 10 '18 at 21:21










  • $begingroup$
    Where does this problem come from? Could you write down the source?
    $endgroup$
    – user376343
    Dec 10 '18 at 22:10


















  • $begingroup$
    Are you familiar with Taylor series (as an available tool)?
    $endgroup$
    – Clement C.
    Dec 10 '18 at 21:19












  • $begingroup$
    No, I can't use it :/
    $endgroup$
    – matematiccc
    Dec 10 '18 at 21:21










  • $begingroup$
    Where does this problem come from? Could you write down the source?
    $endgroup$
    – user376343
    Dec 10 '18 at 22:10
















$begingroup$
Are you familiar with Taylor series (as an available tool)?
$endgroup$
– Clement C.
Dec 10 '18 at 21:19






$begingroup$
Are you familiar with Taylor series (as an available tool)?
$endgroup$
– Clement C.
Dec 10 '18 at 21:19














$begingroup$
No, I can't use it :/
$endgroup$
– matematiccc
Dec 10 '18 at 21:21




$begingroup$
No, I can't use it :/
$endgroup$
– matematiccc
Dec 10 '18 at 21:21












$begingroup$
Where does this problem come from? Could you write down the source?
$endgroup$
– user376343
Dec 10 '18 at 22:10




$begingroup$
Where does this problem come from? Could you write down the source?
$endgroup$
– user376343
Dec 10 '18 at 22:10










1 Answer
1






active

oldest

votes


















3












$begingroup$

We have that



$$(ln n)^{1+frac{(ln(ln n))^{2019}}{ln n}}=ln n cdot e^{frac{(ln(ln n))^{2020}}{ln n}}$$



and then



$$(ln n)^{1+frac{(ln(ln n))^{2019}}{ln n}}-frac{sqrt[2018]n}{ln n}= ln n cdot e^{frac{(ln(ln n))^{2020}}{ln n}}-frac{sqrt[2018]n}{ln n}=ln n left(e^{frac{(ln(ln n))^{2020}}{ln n}}-frac{sqrt[2018]n}{ln^2 n}right)to-infty$$



indeed $forall a>0$




  • $frac{n^a}{log n} to infty$

  • $frac{(ln(ln n))^{a}}{ln n} to 0$






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3034472%2flimit-of-sequence-lim-limits-n-to-infty-ln-n1-frac-ln-ln-n2%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    3












    $begingroup$

    We have that



    $$(ln n)^{1+frac{(ln(ln n))^{2019}}{ln n}}=ln n cdot e^{frac{(ln(ln n))^{2020}}{ln n}}$$



    and then



    $$(ln n)^{1+frac{(ln(ln n))^{2019}}{ln n}}-frac{sqrt[2018]n}{ln n}= ln n cdot e^{frac{(ln(ln n))^{2020}}{ln n}}-frac{sqrt[2018]n}{ln n}=ln n left(e^{frac{(ln(ln n))^{2020}}{ln n}}-frac{sqrt[2018]n}{ln^2 n}right)to-infty$$



    indeed $forall a>0$




    • $frac{n^a}{log n} to infty$

    • $frac{(ln(ln n))^{a}}{ln n} to 0$






    share|cite|improve this answer









    $endgroup$


















      3












      $begingroup$

      We have that



      $$(ln n)^{1+frac{(ln(ln n))^{2019}}{ln n}}=ln n cdot e^{frac{(ln(ln n))^{2020}}{ln n}}$$



      and then



      $$(ln n)^{1+frac{(ln(ln n))^{2019}}{ln n}}-frac{sqrt[2018]n}{ln n}= ln n cdot e^{frac{(ln(ln n))^{2020}}{ln n}}-frac{sqrt[2018]n}{ln n}=ln n left(e^{frac{(ln(ln n))^{2020}}{ln n}}-frac{sqrt[2018]n}{ln^2 n}right)to-infty$$



      indeed $forall a>0$




      • $frac{n^a}{log n} to infty$

      • $frac{(ln(ln n))^{a}}{ln n} to 0$






      share|cite|improve this answer









      $endgroup$
















        3












        3








        3





        $begingroup$

        We have that



        $$(ln n)^{1+frac{(ln(ln n))^{2019}}{ln n}}=ln n cdot e^{frac{(ln(ln n))^{2020}}{ln n}}$$



        and then



        $$(ln n)^{1+frac{(ln(ln n))^{2019}}{ln n}}-frac{sqrt[2018]n}{ln n}= ln n cdot e^{frac{(ln(ln n))^{2020}}{ln n}}-frac{sqrt[2018]n}{ln n}=ln n left(e^{frac{(ln(ln n))^{2020}}{ln n}}-frac{sqrt[2018]n}{ln^2 n}right)to-infty$$



        indeed $forall a>0$




        • $frac{n^a}{log n} to infty$

        • $frac{(ln(ln n))^{a}}{ln n} to 0$






        share|cite|improve this answer









        $endgroup$



        We have that



        $$(ln n)^{1+frac{(ln(ln n))^{2019}}{ln n}}=ln n cdot e^{frac{(ln(ln n))^{2020}}{ln n}}$$



        and then



        $$(ln n)^{1+frac{(ln(ln n))^{2019}}{ln n}}-frac{sqrt[2018]n}{ln n}= ln n cdot e^{frac{(ln(ln n))^{2020}}{ln n}}-frac{sqrt[2018]n}{ln n}=ln n left(e^{frac{(ln(ln n))^{2020}}{ln n}}-frac{sqrt[2018]n}{ln^2 n}right)to-infty$$



        indeed $forall a>0$




        • $frac{n^a}{log n} to infty$

        • $frac{(ln(ln n))^{a}}{ln n} to 0$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 10 '18 at 22:27









        gimusigimusi

        92.8k84494




        92.8k84494






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3034472%2flimit-of-sequence-lim-limits-n-to-infty-ln-n1-frac-ln-ln-n2%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            How do I know what Microsoft account the skydrive app is syncing to?

            When does type information flow backwards in C++?

            Grease: Live!