Does $sum_{n=1}^{infty} frac{3+(-1)^n}{n}$ converge or diverge?
$begingroup$
I'm having trouble figuring out if the following series converges or diverges.
$$sum_{n=1}^{infty} frac{3+(-1)^n}{n}$$
Here's my thinking:
$$frac{2}{n} leq frac{3+(-1)^n}{n}$$
Since $sum_{n=1}^{infty} frac{2}{n}$ diverges, then so does $sum_{n=1}^{infty} frac{3+(-1)^n}{n}$
Is that correct?
calculus sequences-and-series divergent-series
$endgroup$
add a comment |
$begingroup$
I'm having trouble figuring out if the following series converges or diverges.
$$sum_{n=1}^{infty} frac{3+(-1)^n}{n}$$
Here's my thinking:
$$frac{2}{n} leq frac{3+(-1)^n}{n}$$
Since $sum_{n=1}^{infty} frac{2}{n}$ diverges, then so does $sum_{n=1}^{infty} frac{3+(-1)^n}{n}$
Is that correct?
calculus sequences-and-series divergent-series
$endgroup$
9
$begingroup$
Yes. correct. continue.
$endgroup$
– hamam_Abdallah
Dec 10 '18 at 20:47
add a comment |
$begingroup$
I'm having trouble figuring out if the following series converges or diverges.
$$sum_{n=1}^{infty} frac{3+(-1)^n}{n}$$
Here's my thinking:
$$frac{2}{n} leq frac{3+(-1)^n}{n}$$
Since $sum_{n=1}^{infty} frac{2}{n}$ diverges, then so does $sum_{n=1}^{infty} frac{3+(-1)^n}{n}$
Is that correct?
calculus sequences-and-series divergent-series
$endgroup$
I'm having trouble figuring out if the following series converges or diverges.
$$sum_{n=1}^{infty} frac{3+(-1)^n}{n}$$
Here's my thinking:
$$frac{2}{n} leq frac{3+(-1)^n}{n}$$
Since $sum_{n=1}^{infty} frac{2}{n}$ diverges, then so does $sum_{n=1}^{infty} frac{3+(-1)^n}{n}$
Is that correct?
calculus sequences-and-series divergent-series
calculus sequences-and-series divergent-series
edited Dec 22 '18 at 8:37
choco_addicted
8,08261947
8,08261947
asked Dec 10 '18 at 20:46
James MitchellJames Mitchell
25627
25627
9
$begingroup$
Yes. correct. continue.
$endgroup$
– hamam_Abdallah
Dec 10 '18 at 20:47
add a comment |
9
$begingroup$
Yes. correct. continue.
$endgroup$
– hamam_Abdallah
Dec 10 '18 at 20:47
9
9
$begingroup$
Yes. correct. continue.
$endgroup$
– hamam_Abdallah
Dec 10 '18 at 20:47
$begingroup$
Yes. correct. continue.
$endgroup$
– hamam_Abdallah
Dec 10 '18 at 20:47
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Note that
$$frac{2}{n}leqfrac{3+(-1)^n}{n},$$
so by the comparison criteria, your series diverges.
$endgroup$
add a comment |
$begingroup$
Yes your prove is perfectly fine, indeed note, as an alternative
$$sum_{n=1}^{N} frac{3+(-1)^n}{n}=sum_{n=1}^{N} frac{3}{n}+sum_{n=1}^{N} frac{(-1)^n}{n}$$
and taking the limit $Nto infty$ the first series on the RHS diverges whereas the second one converges (by Leibniz).
$endgroup$
2
$begingroup$
Please don't casually split up sums like this without justification. (This one is OK but you have to show why.)
$endgroup$
– Ethan Bolker
Dec 10 '18 at 21:02
$begingroup$
@EthanBolker Yes you are right! I fix, Thanks
$endgroup$
– gimusi
Dec 10 '18 at 21:03
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3034442%2fdoes-sum-n-1-infty-frac3-1nn-converge-or-diverge%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Note that
$$frac{2}{n}leqfrac{3+(-1)^n}{n},$$
so by the comparison criteria, your series diverges.
$endgroup$
add a comment |
$begingroup$
Note that
$$frac{2}{n}leqfrac{3+(-1)^n}{n},$$
so by the comparison criteria, your series diverges.
$endgroup$
add a comment |
$begingroup$
Note that
$$frac{2}{n}leqfrac{3+(-1)^n}{n},$$
so by the comparison criteria, your series diverges.
$endgroup$
Note that
$$frac{2}{n}leqfrac{3+(-1)^n}{n},$$
so by the comparison criteria, your series diverges.
answered Dec 10 '18 at 20:58
José Alejandro Aburto AranedaJosé Alejandro Aburto Araneda
802110
802110
add a comment |
add a comment |
$begingroup$
Yes your prove is perfectly fine, indeed note, as an alternative
$$sum_{n=1}^{N} frac{3+(-1)^n}{n}=sum_{n=1}^{N} frac{3}{n}+sum_{n=1}^{N} frac{(-1)^n}{n}$$
and taking the limit $Nto infty$ the first series on the RHS diverges whereas the second one converges (by Leibniz).
$endgroup$
2
$begingroup$
Please don't casually split up sums like this without justification. (This one is OK but you have to show why.)
$endgroup$
– Ethan Bolker
Dec 10 '18 at 21:02
$begingroup$
@EthanBolker Yes you are right! I fix, Thanks
$endgroup$
– gimusi
Dec 10 '18 at 21:03
add a comment |
$begingroup$
Yes your prove is perfectly fine, indeed note, as an alternative
$$sum_{n=1}^{N} frac{3+(-1)^n}{n}=sum_{n=1}^{N} frac{3}{n}+sum_{n=1}^{N} frac{(-1)^n}{n}$$
and taking the limit $Nto infty$ the first series on the RHS diverges whereas the second one converges (by Leibniz).
$endgroup$
2
$begingroup$
Please don't casually split up sums like this without justification. (This one is OK but you have to show why.)
$endgroup$
– Ethan Bolker
Dec 10 '18 at 21:02
$begingroup$
@EthanBolker Yes you are right! I fix, Thanks
$endgroup$
– gimusi
Dec 10 '18 at 21:03
add a comment |
$begingroup$
Yes your prove is perfectly fine, indeed note, as an alternative
$$sum_{n=1}^{N} frac{3+(-1)^n}{n}=sum_{n=1}^{N} frac{3}{n}+sum_{n=1}^{N} frac{(-1)^n}{n}$$
and taking the limit $Nto infty$ the first series on the RHS diverges whereas the second one converges (by Leibniz).
$endgroup$
Yes your prove is perfectly fine, indeed note, as an alternative
$$sum_{n=1}^{N} frac{3+(-1)^n}{n}=sum_{n=1}^{N} frac{3}{n}+sum_{n=1}^{N} frac{(-1)^n}{n}$$
and taking the limit $Nto infty$ the first series on the RHS diverges whereas the second one converges (by Leibniz).
edited Dec 10 '18 at 21:04
answered Dec 10 '18 at 20:57
gimusigimusi
92.8k84494
92.8k84494
2
$begingroup$
Please don't casually split up sums like this without justification. (This one is OK but you have to show why.)
$endgroup$
– Ethan Bolker
Dec 10 '18 at 21:02
$begingroup$
@EthanBolker Yes you are right! I fix, Thanks
$endgroup$
– gimusi
Dec 10 '18 at 21:03
add a comment |
2
$begingroup$
Please don't casually split up sums like this without justification. (This one is OK but you have to show why.)
$endgroup$
– Ethan Bolker
Dec 10 '18 at 21:02
$begingroup$
@EthanBolker Yes you are right! I fix, Thanks
$endgroup$
– gimusi
Dec 10 '18 at 21:03
2
2
$begingroup$
Please don't casually split up sums like this without justification. (This one is OK but you have to show why.)
$endgroup$
– Ethan Bolker
Dec 10 '18 at 21:02
$begingroup$
Please don't casually split up sums like this without justification. (This one is OK but you have to show why.)
$endgroup$
– Ethan Bolker
Dec 10 '18 at 21:02
$begingroup$
@EthanBolker Yes you are right! I fix, Thanks
$endgroup$
– gimusi
Dec 10 '18 at 21:03
$begingroup$
@EthanBolker Yes you are right! I fix, Thanks
$endgroup$
– gimusi
Dec 10 '18 at 21:03
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3034442%2fdoes-sum-n-1-infty-frac3-1nn-converge-or-diverge%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
9
$begingroup$
Yes. correct. continue.
$endgroup$
– hamam_Abdallah
Dec 10 '18 at 20:47