Does $sum_{n=1}^{infty} frac{3+(-1)^n}{n}$ converge or diverge?












6












$begingroup$


I'm having trouble figuring out if the following series converges or diverges.



$$sum_{n=1}^{infty} frac{3+(-1)^n}{n}$$



Here's my thinking:



$$frac{2}{n} leq frac{3+(-1)^n}{n}$$



Since $sum_{n=1}^{infty} frac{2}{n}$ diverges, then so does $sum_{n=1}^{infty} frac{3+(-1)^n}{n}$



Is that correct?










share|cite|improve this question











$endgroup$








  • 9




    $begingroup$
    Yes. correct. continue.
    $endgroup$
    – hamam_Abdallah
    Dec 10 '18 at 20:47
















6












$begingroup$


I'm having trouble figuring out if the following series converges or diverges.



$$sum_{n=1}^{infty} frac{3+(-1)^n}{n}$$



Here's my thinking:



$$frac{2}{n} leq frac{3+(-1)^n}{n}$$



Since $sum_{n=1}^{infty} frac{2}{n}$ diverges, then so does $sum_{n=1}^{infty} frac{3+(-1)^n}{n}$



Is that correct?










share|cite|improve this question











$endgroup$








  • 9




    $begingroup$
    Yes. correct. continue.
    $endgroup$
    – hamam_Abdallah
    Dec 10 '18 at 20:47














6












6








6





$begingroup$


I'm having trouble figuring out if the following series converges or diverges.



$$sum_{n=1}^{infty} frac{3+(-1)^n}{n}$$



Here's my thinking:



$$frac{2}{n} leq frac{3+(-1)^n}{n}$$



Since $sum_{n=1}^{infty} frac{2}{n}$ diverges, then so does $sum_{n=1}^{infty} frac{3+(-1)^n}{n}$



Is that correct?










share|cite|improve this question











$endgroup$




I'm having trouble figuring out if the following series converges or diverges.



$$sum_{n=1}^{infty} frac{3+(-1)^n}{n}$$



Here's my thinking:



$$frac{2}{n} leq frac{3+(-1)^n}{n}$$



Since $sum_{n=1}^{infty} frac{2}{n}$ diverges, then so does $sum_{n=1}^{infty} frac{3+(-1)^n}{n}$



Is that correct?







calculus sequences-and-series divergent-series






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 22 '18 at 8:37









choco_addicted

8,08261947




8,08261947










asked Dec 10 '18 at 20:46









James MitchellJames Mitchell

25627




25627








  • 9




    $begingroup$
    Yes. correct. continue.
    $endgroup$
    – hamam_Abdallah
    Dec 10 '18 at 20:47














  • 9




    $begingroup$
    Yes. correct. continue.
    $endgroup$
    – hamam_Abdallah
    Dec 10 '18 at 20:47








9




9




$begingroup$
Yes. correct. continue.
$endgroup$
– hamam_Abdallah
Dec 10 '18 at 20:47




$begingroup$
Yes. correct. continue.
$endgroup$
– hamam_Abdallah
Dec 10 '18 at 20:47










2 Answers
2






active

oldest

votes


















0












$begingroup$

Note that
$$frac{2}{n}leqfrac{3+(-1)^n}{n},$$
so by the comparison criteria, your series diverges.






share|cite|improve this answer









$endgroup$





















    0












    $begingroup$

    Yes your prove is perfectly fine, indeed note, as an alternative



    $$sum_{n=1}^{N} frac{3+(-1)^n}{n}=sum_{n=1}^{N} frac{3}{n}+sum_{n=1}^{N} frac{(-1)^n}{n}$$



    and taking the limit $Nto infty$ the first series on the RHS diverges whereas the second one converges (by Leibniz).






    share|cite|improve this answer











    $endgroup$









    • 2




      $begingroup$
      Please don't casually split up sums like this without justification. (This one is OK but you have to show why.)
      $endgroup$
      – Ethan Bolker
      Dec 10 '18 at 21:02










    • $begingroup$
      @EthanBolker Yes you are right! I fix, Thanks
      $endgroup$
      – gimusi
      Dec 10 '18 at 21:03











    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3034442%2fdoes-sum-n-1-infty-frac3-1nn-converge-or-diverge%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    Note that
    $$frac{2}{n}leqfrac{3+(-1)^n}{n},$$
    so by the comparison criteria, your series diverges.






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      Note that
      $$frac{2}{n}leqfrac{3+(-1)^n}{n},$$
      so by the comparison criteria, your series diverges.






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        Note that
        $$frac{2}{n}leqfrac{3+(-1)^n}{n},$$
        so by the comparison criteria, your series diverges.






        share|cite|improve this answer









        $endgroup$



        Note that
        $$frac{2}{n}leqfrac{3+(-1)^n}{n},$$
        so by the comparison criteria, your series diverges.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 10 '18 at 20:58









        José Alejandro Aburto AranedaJosé Alejandro Aburto Araneda

        802110




        802110























            0












            $begingroup$

            Yes your prove is perfectly fine, indeed note, as an alternative



            $$sum_{n=1}^{N} frac{3+(-1)^n}{n}=sum_{n=1}^{N} frac{3}{n}+sum_{n=1}^{N} frac{(-1)^n}{n}$$



            and taking the limit $Nto infty$ the first series on the RHS diverges whereas the second one converges (by Leibniz).






            share|cite|improve this answer











            $endgroup$









            • 2




              $begingroup$
              Please don't casually split up sums like this without justification. (This one is OK but you have to show why.)
              $endgroup$
              – Ethan Bolker
              Dec 10 '18 at 21:02










            • $begingroup$
              @EthanBolker Yes you are right! I fix, Thanks
              $endgroup$
              – gimusi
              Dec 10 '18 at 21:03
















            0












            $begingroup$

            Yes your prove is perfectly fine, indeed note, as an alternative



            $$sum_{n=1}^{N} frac{3+(-1)^n}{n}=sum_{n=1}^{N} frac{3}{n}+sum_{n=1}^{N} frac{(-1)^n}{n}$$



            and taking the limit $Nto infty$ the first series on the RHS diverges whereas the second one converges (by Leibniz).






            share|cite|improve this answer











            $endgroup$









            • 2




              $begingroup$
              Please don't casually split up sums like this without justification. (This one is OK but you have to show why.)
              $endgroup$
              – Ethan Bolker
              Dec 10 '18 at 21:02










            • $begingroup$
              @EthanBolker Yes you are right! I fix, Thanks
              $endgroup$
              – gimusi
              Dec 10 '18 at 21:03














            0












            0








            0





            $begingroup$

            Yes your prove is perfectly fine, indeed note, as an alternative



            $$sum_{n=1}^{N} frac{3+(-1)^n}{n}=sum_{n=1}^{N} frac{3}{n}+sum_{n=1}^{N} frac{(-1)^n}{n}$$



            and taking the limit $Nto infty$ the first series on the RHS diverges whereas the second one converges (by Leibniz).






            share|cite|improve this answer











            $endgroup$



            Yes your prove is perfectly fine, indeed note, as an alternative



            $$sum_{n=1}^{N} frac{3+(-1)^n}{n}=sum_{n=1}^{N} frac{3}{n}+sum_{n=1}^{N} frac{(-1)^n}{n}$$



            and taking the limit $Nto infty$ the first series on the RHS diverges whereas the second one converges (by Leibniz).







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Dec 10 '18 at 21:04

























            answered Dec 10 '18 at 20:57









            gimusigimusi

            92.8k84494




            92.8k84494








            • 2




              $begingroup$
              Please don't casually split up sums like this without justification. (This one is OK but you have to show why.)
              $endgroup$
              – Ethan Bolker
              Dec 10 '18 at 21:02










            • $begingroup$
              @EthanBolker Yes you are right! I fix, Thanks
              $endgroup$
              – gimusi
              Dec 10 '18 at 21:03














            • 2




              $begingroup$
              Please don't casually split up sums like this without justification. (This one is OK but you have to show why.)
              $endgroup$
              – Ethan Bolker
              Dec 10 '18 at 21:02










            • $begingroup$
              @EthanBolker Yes you are right! I fix, Thanks
              $endgroup$
              – gimusi
              Dec 10 '18 at 21:03








            2




            2




            $begingroup$
            Please don't casually split up sums like this without justification. (This one is OK but you have to show why.)
            $endgroup$
            – Ethan Bolker
            Dec 10 '18 at 21:02




            $begingroup$
            Please don't casually split up sums like this without justification. (This one is OK but you have to show why.)
            $endgroup$
            – Ethan Bolker
            Dec 10 '18 at 21:02












            $begingroup$
            @EthanBolker Yes you are right! I fix, Thanks
            $endgroup$
            – gimusi
            Dec 10 '18 at 21:03




            $begingroup$
            @EthanBolker Yes you are right! I fix, Thanks
            $endgroup$
            – gimusi
            Dec 10 '18 at 21:03


















            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3034442%2fdoes-sum-n-1-infty-frac3-1nn-converge-or-diverge%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Aardman Animations

            Are they similar matrix

            “minimization” problem in Euclidean space related to orthonormal basis