How to find a,b and c in terms of the semi perimeter (s) from this equation?












0












$begingroup$


I have an equation: $(s-a)/4=(s-b)/3=(s-c)/2$ , from this I'm supposed to get a,b and c (the sides of a triangle) in terms of s..
If I substitute $s=(a+b+c)/2$ in the given system of equations I get three other equations : $a+3b-2c=0$
$2a+b-c$ and $4a-3b+c=0$ . But still I don't see any quick way to find a,b,c in terms of s. Is the only way to get the them in terms of s, to actually solve for a,b and c and then get them in terms of s?

*by getting them in terms of s, I mean being able to write them as $a = (constant)*s$ etc..










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    I have an equation: $(s-a)/4=(s-b)/3=(s-c)/2$ , from this I'm supposed to get a,b and c (the sides of a triangle) in terms of s..
    If I substitute $s=(a+b+c)/2$ in the given system of equations I get three other equations : $a+3b-2c=0$
    $2a+b-c$ and $4a-3b+c=0$ . But still I don't see any quick way to find a,b,c in terms of s. Is the only way to get the them in terms of s, to actually solve for a,b and c and then get them in terms of s?

    *by getting them in terms of s, I mean being able to write them as $a = (constant)*s$ etc..










    share|cite|improve this question











    $endgroup$















      0












      0








      0





      $begingroup$


      I have an equation: $(s-a)/4=(s-b)/3=(s-c)/2$ , from this I'm supposed to get a,b and c (the sides of a triangle) in terms of s..
      If I substitute $s=(a+b+c)/2$ in the given system of equations I get three other equations : $a+3b-2c=0$
      $2a+b-c$ and $4a-3b+c=0$ . But still I don't see any quick way to find a,b,c in terms of s. Is the only way to get the them in terms of s, to actually solve for a,b and c and then get them in terms of s?

      *by getting them in terms of s, I mean being able to write them as $a = (constant)*s$ etc..










      share|cite|improve this question











      $endgroup$




      I have an equation: $(s-a)/4=(s-b)/3=(s-c)/2$ , from this I'm supposed to get a,b and c (the sides of a triangle) in terms of s..
      If I substitute $s=(a+b+c)/2$ in the given system of equations I get three other equations : $a+3b-2c=0$
      $2a+b-c$ and $4a-3b+c=0$ . But still I don't see any quick way to find a,b,c in terms of s. Is the only way to get the them in terms of s, to actually solve for a,b and c and then get them in terms of s?

      *by getting them in terms of s, I mean being able to write them as $a = (constant)*s$ etc..







      linear-algebra systems-of-equations






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 2 at 12:55









      Harry Peter

      5,47911439




      5,47911439










      asked Dec 18 '18 at 8:02









      karun mathewskarun mathews

      245




      245






















          3 Answers
          3






          active

          oldest

          votes


















          2












          $begingroup$

          If $frac a b=frac c d$ then $frac a b=frac c d=frac {a+c} {b+d}$ and similarly for equality for three fractions. Hence $frac {s-a} 4=frac {s-b} 3=frac {s-c} 2=frac {s-a+s-b+s-c} {4+3+2}=frac {3s-2s} 9$. Now you can get your expressions for $a,b,c$ easily.






          share|cite|improve this answer









          $endgroup$





















            0












            $begingroup$

            Let
            begin{align}
            tfrac14(s-a)=tfrac13(s-b)=tfrac12(s-c)&=k
            quadtext{for some }kinmathbb{R}
            end{align}



            Then we have a linear system of four equations in
            four variables



            begin{align}
            left[
            begin{matrix}
            1&0&0&4 \
            0&1&0&3\
            0&0&1&2\
            1&1&1&0
            end{matrix}
            right]
            cdot
            left[
            begin{matrix}
            a\b\c\k
            end{matrix}
            right]
            &=
            left[
            begin{matrix}
            s\s\s\2s
            end{matrix}
            right]
            ,
            end{align}



            which can be easily solved with any standard method
            and has a solution in terms of $s$:



            begin{align}
            a &= tfrac59,s
            ,quad
            b = tfrac23,s
            ,quad
            c = tfrac79,s
            ,quad
            k = tfrac19,s
            .
            end{align}






            share|cite|improve this answer









            $endgroup$





















              0












              $begingroup$

              A variation of Kavi Rama Murthy's answer. Denote the fractions by $k$:
              $$(s-a)/4=(s-b)/3=(s-c)/2=k Rightarrow \
              s-a=4k;\
              s-b=3k;\
              s-c=2k.$$

              Add them to find $k$:
              $$3s-2s=9k Rightarrow k=frac{s}{9}.$$
              Hence:
              $$s-a=frac{4s}{9} Rightarrow a=frac{5s}{9};\
              s-b=frac{3s}{9} Rightarrow b=frac{2s}{3};\
              s-c=frac{2s}{9} Rightarrow c=frac{7s}{9}.$$






              share|cite|improve this answer









              $endgroup$













                Your Answer





                StackExchange.ifUsing("editor", function () {
                return StackExchange.using("mathjaxEditing", function () {
                StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
                StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                });
                });
                }, "mathjax-editing");

                StackExchange.ready(function() {
                var channelOptions = {
                tags: "".split(" "),
                id: "69"
                };
                initTagRenderer("".split(" "), "".split(" "), channelOptions);

                StackExchange.using("externalEditor", function() {
                // Have to fire editor after snippets, if snippets enabled
                if (StackExchange.settings.snippets.snippetsEnabled) {
                StackExchange.using("snippets", function() {
                createEditor();
                });
                }
                else {
                createEditor();
                }
                });

                function createEditor() {
                StackExchange.prepareEditor({
                heartbeatType: 'answer',
                autoActivateHeartbeat: false,
                convertImagesToLinks: true,
                noModals: true,
                showLowRepImageUploadWarning: true,
                reputationToPostImages: 10,
                bindNavPrevention: true,
                postfix: "",
                imageUploader: {
                brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                allowUrls: true
                },
                noCode: true, onDemand: true,
                discardSelector: ".discard-answer"
                ,immediatelyShowMarkdownHelp:true
                });


                }
                });














                draft saved

                draft discarded


















                StackExchange.ready(
                function () {
                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044890%2fhow-to-find-a-b-and-c-in-terms-of-the-semi-perimeter-s-from-this-equation%23new-answer', 'question_page');
                }
                );

                Post as a guest















                Required, but never shown

























                3 Answers
                3






                active

                oldest

                votes








                3 Answers
                3






                active

                oldest

                votes









                active

                oldest

                votes






                active

                oldest

                votes









                2












                $begingroup$

                If $frac a b=frac c d$ then $frac a b=frac c d=frac {a+c} {b+d}$ and similarly for equality for three fractions. Hence $frac {s-a} 4=frac {s-b} 3=frac {s-c} 2=frac {s-a+s-b+s-c} {4+3+2}=frac {3s-2s} 9$. Now you can get your expressions for $a,b,c$ easily.






                share|cite|improve this answer









                $endgroup$


















                  2












                  $begingroup$

                  If $frac a b=frac c d$ then $frac a b=frac c d=frac {a+c} {b+d}$ and similarly for equality for three fractions. Hence $frac {s-a} 4=frac {s-b} 3=frac {s-c} 2=frac {s-a+s-b+s-c} {4+3+2}=frac {3s-2s} 9$. Now you can get your expressions for $a,b,c$ easily.






                  share|cite|improve this answer









                  $endgroup$
















                    2












                    2








                    2





                    $begingroup$

                    If $frac a b=frac c d$ then $frac a b=frac c d=frac {a+c} {b+d}$ and similarly for equality for three fractions. Hence $frac {s-a} 4=frac {s-b} 3=frac {s-c} 2=frac {s-a+s-b+s-c} {4+3+2}=frac {3s-2s} 9$. Now you can get your expressions for $a,b,c$ easily.






                    share|cite|improve this answer









                    $endgroup$



                    If $frac a b=frac c d$ then $frac a b=frac c d=frac {a+c} {b+d}$ and similarly for equality for three fractions. Hence $frac {s-a} 4=frac {s-b} 3=frac {s-c} 2=frac {s-a+s-b+s-c} {4+3+2}=frac {3s-2s} 9$. Now you can get your expressions for $a,b,c$ easily.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Dec 18 '18 at 8:16









                    Kavi Rama MurthyKavi Rama Murthy

                    62.9k42362




                    62.9k42362























                        0












                        $begingroup$

                        Let
                        begin{align}
                        tfrac14(s-a)=tfrac13(s-b)=tfrac12(s-c)&=k
                        quadtext{for some }kinmathbb{R}
                        end{align}



                        Then we have a linear system of four equations in
                        four variables



                        begin{align}
                        left[
                        begin{matrix}
                        1&0&0&4 \
                        0&1&0&3\
                        0&0&1&2\
                        1&1&1&0
                        end{matrix}
                        right]
                        cdot
                        left[
                        begin{matrix}
                        a\b\c\k
                        end{matrix}
                        right]
                        &=
                        left[
                        begin{matrix}
                        s\s\s\2s
                        end{matrix}
                        right]
                        ,
                        end{align}



                        which can be easily solved with any standard method
                        and has a solution in terms of $s$:



                        begin{align}
                        a &= tfrac59,s
                        ,quad
                        b = tfrac23,s
                        ,quad
                        c = tfrac79,s
                        ,quad
                        k = tfrac19,s
                        .
                        end{align}






                        share|cite|improve this answer









                        $endgroup$


















                          0












                          $begingroup$

                          Let
                          begin{align}
                          tfrac14(s-a)=tfrac13(s-b)=tfrac12(s-c)&=k
                          quadtext{for some }kinmathbb{R}
                          end{align}



                          Then we have a linear system of four equations in
                          four variables



                          begin{align}
                          left[
                          begin{matrix}
                          1&0&0&4 \
                          0&1&0&3\
                          0&0&1&2\
                          1&1&1&0
                          end{matrix}
                          right]
                          cdot
                          left[
                          begin{matrix}
                          a\b\c\k
                          end{matrix}
                          right]
                          &=
                          left[
                          begin{matrix}
                          s\s\s\2s
                          end{matrix}
                          right]
                          ,
                          end{align}



                          which can be easily solved with any standard method
                          and has a solution in terms of $s$:



                          begin{align}
                          a &= tfrac59,s
                          ,quad
                          b = tfrac23,s
                          ,quad
                          c = tfrac79,s
                          ,quad
                          k = tfrac19,s
                          .
                          end{align}






                          share|cite|improve this answer









                          $endgroup$
















                            0












                            0








                            0





                            $begingroup$

                            Let
                            begin{align}
                            tfrac14(s-a)=tfrac13(s-b)=tfrac12(s-c)&=k
                            quadtext{for some }kinmathbb{R}
                            end{align}



                            Then we have a linear system of four equations in
                            four variables



                            begin{align}
                            left[
                            begin{matrix}
                            1&0&0&4 \
                            0&1&0&3\
                            0&0&1&2\
                            1&1&1&0
                            end{matrix}
                            right]
                            cdot
                            left[
                            begin{matrix}
                            a\b\c\k
                            end{matrix}
                            right]
                            &=
                            left[
                            begin{matrix}
                            s\s\s\2s
                            end{matrix}
                            right]
                            ,
                            end{align}



                            which can be easily solved with any standard method
                            and has a solution in terms of $s$:



                            begin{align}
                            a &= tfrac59,s
                            ,quad
                            b = tfrac23,s
                            ,quad
                            c = tfrac79,s
                            ,quad
                            k = tfrac19,s
                            .
                            end{align}






                            share|cite|improve this answer









                            $endgroup$



                            Let
                            begin{align}
                            tfrac14(s-a)=tfrac13(s-b)=tfrac12(s-c)&=k
                            quadtext{for some }kinmathbb{R}
                            end{align}



                            Then we have a linear system of four equations in
                            four variables



                            begin{align}
                            left[
                            begin{matrix}
                            1&0&0&4 \
                            0&1&0&3\
                            0&0&1&2\
                            1&1&1&0
                            end{matrix}
                            right]
                            cdot
                            left[
                            begin{matrix}
                            a\b\c\k
                            end{matrix}
                            right]
                            &=
                            left[
                            begin{matrix}
                            s\s\s\2s
                            end{matrix}
                            right]
                            ,
                            end{align}



                            which can be easily solved with any standard method
                            and has a solution in terms of $s$:



                            begin{align}
                            a &= tfrac59,s
                            ,quad
                            b = tfrac23,s
                            ,quad
                            c = tfrac79,s
                            ,quad
                            k = tfrac19,s
                            .
                            end{align}







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Dec 18 '18 at 9:07









                            g.kovg.kov

                            6,1821818




                            6,1821818























                                0












                                $begingroup$

                                A variation of Kavi Rama Murthy's answer. Denote the fractions by $k$:
                                $$(s-a)/4=(s-b)/3=(s-c)/2=k Rightarrow \
                                s-a=4k;\
                                s-b=3k;\
                                s-c=2k.$$

                                Add them to find $k$:
                                $$3s-2s=9k Rightarrow k=frac{s}{9}.$$
                                Hence:
                                $$s-a=frac{4s}{9} Rightarrow a=frac{5s}{9};\
                                s-b=frac{3s}{9} Rightarrow b=frac{2s}{3};\
                                s-c=frac{2s}{9} Rightarrow c=frac{7s}{9}.$$






                                share|cite|improve this answer









                                $endgroup$


















                                  0












                                  $begingroup$

                                  A variation of Kavi Rama Murthy's answer. Denote the fractions by $k$:
                                  $$(s-a)/4=(s-b)/3=(s-c)/2=k Rightarrow \
                                  s-a=4k;\
                                  s-b=3k;\
                                  s-c=2k.$$

                                  Add them to find $k$:
                                  $$3s-2s=9k Rightarrow k=frac{s}{9}.$$
                                  Hence:
                                  $$s-a=frac{4s}{9} Rightarrow a=frac{5s}{9};\
                                  s-b=frac{3s}{9} Rightarrow b=frac{2s}{3};\
                                  s-c=frac{2s}{9} Rightarrow c=frac{7s}{9}.$$






                                  share|cite|improve this answer









                                  $endgroup$
















                                    0












                                    0








                                    0





                                    $begingroup$

                                    A variation of Kavi Rama Murthy's answer. Denote the fractions by $k$:
                                    $$(s-a)/4=(s-b)/3=(s-c)/2=k Rightarrow \
                                    s-a=4k;\
                                    s-b=3k;\
                                    s-c=2k.$$

                                    Add them to find $k$:
                                    $$3s-2s=9k Rightarrow k=frac{s}{9}.$$
                                    Hence:
                                    $$s-a=frac{4s}{9} Rightarrow a=frac{5s}{9};\
                                    s-b=frac{3s}{9} Rightarrow b=frac{2s}{3};\
                                    s-c=frac{2s}{9} Rightarrow c=frac{7s}{9}.$$






                                    share|cite|improve this answer









                                    $endgroup$



                                    A variation of Kavi Rama Murthy's answer. Denote the fractions by $k$:
                                    $$(s-a)/4=(s-b)/3=(s-c)/2=k Rightarrow \
                                    s-a=4k;\
                                    s-b=3k;\
                                    s-c=2k.$$

                                    Add them to find $k$:
                                    $$3s-2s=9k Rightarrow k=frac{s}{9}.$$
                                    Hence:
                                    $$s-a=frac{4s}{9} Rightarrow a=frac{5s}{9};\
                                    s-b=frac{3s}{9} Rightarrow b=frac{2s}{3};\
                                    s-c=frac{2s}{9} Rightarrow c=frac{7s}{9}.$$







                                    share|cite|improve this answer












                                    share|cite|improve this answer



                                    share|cite|improve this answer










                                    answered Dec 18 '18 at 13:50









                                    farruhotafarruhota

                                    20.5k2739




                                    20.5k2739






























                                        draft saved

                                        draft discarded




















































                                        Thanks for contributing an answer to Mathematics Stack Exchange!


                                        • Please be sure to answer the question. Provide details and share your research!

                                        But avoid



                                        • Asking for help, clarification, or responding to other answers.

                                        • Making statements based on opinion; back them up with references or personal experience.


                                        Use MathJax to format equations. MathJax reference.


                                        To learn more, see our tips on writing great answers.




                                        draft saved


                                        draft discarded














                                        StackExchange.ready(
                                        function () {
                                        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044890%2fhow-to-find-a-b-and-c-in-terms-of-the-semi-perimeter-s-from-this-equation%23new-answer', 'question_page');
                                        }
                                        );

                                        Post as a guest















                                        Required, but never shown





















































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown

































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown







                                        Popular posts from this blog

                                        Probability when a professor distributes a quiz and homework assignment to a class of n students.

                                        Aardman Animations

                                        Are they similar matrix