How to find a,b and c in terms of the semi perimeter (s) from this equation?
$begingroup$
I have an equation: $(s-a)/4=(s-b)/3=(s-c)/2$ , from this I'm supposed to get a,b and c (the sides of a triangle) in terms of s..
If I substitute $s=(a+b+c)/2$ in the given system of equations I get three other equations : $a+3b-2c=0$
$2a+b-c$ and $4a-3b+c=0$ . But still I don't see any quick way to find a,b,c in terms of s. Is the only way to get the them in terms of s, to actually solve for a,b and c and then get them in terms of s?
*by getting them in terms of s, I mean being able to write them as $a = (constant)*s$ etc..
linear-algebra systems-of-equations
$endgroup$
add a comment |
$begingroup$
I have an equation: $(s-a)/4=(s-b)/3=(s-c)/2$ , from this I'm supposed to get a,b and c (the sides of a triangle) in terms of s..
If I substitute $s=(a+b+c)/2$ in the given system of equations I get three other equations : $a+3b-2c=0$
$2a+b-c$ and $4a-3b+c=0$ . But still I don't see any quick way to find a,b,c in terms of s. Is the only way to get the them in terms of s, to actually solve for a,b and c and then get them in terms of s?
*by getting them in terms of s, I mean being able to write them as $a = (constant)*s$ etc..
linear-algebra systems-of-equations
$endgroup$
add a comment |
$begingroup$
I have an equation: $(s-a)/4=(s-b)/3=(s-c)/2$ , from this I'm supposed to get a,b and c (the sides of a triangle) in terms of s..
If I substitute $s=(a+b+c)/2$ in the given system of equations I get three other equations : $a+3b-2c=0$
$2a+b-c$ and $4a-3b+c=0$ . But still I don't see any quick way to find a,b,c in terms of s. Is the only way to get the them in terms of s, to actually solve for a,b and c and then get them in terms of s?
*by getting them in terms of s, I mean being able to write them as $a = (constant)*s$ etc..
linear-algebra systems-of-equations
$endgroup$
I have an equation: $(s-a)/4=(s-b)/3=(s-c)/2$ , from this I'm supposed to get a,b and c (the sides of a triangle) in terms of s..
If I substitute $s=(a+b+c)/2$ in the given system of equations I get three other equations : $a+3b-2c=0$
$2a+b-c$ and $4a-3b+c=0$ . But still I don't see any quick way to find a,b,c in terms of s. Is the only way to get the them in terms of s, to actually solve for a,b and c and then get them in terms of s?
*by getting them in terms of s, I mean being able to write them as $a = (constant)*s$ etc..
linear-algebra systems-of-equations
linear-algebra systems-of-equations
edited Jan 2 at 12:55
Harry Peter
5,47911439
5,47911439
asked Dec 18 '18 at 8:02
karun mathewskarun mathews
245
245
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
If $frac a b=frac c d$ then $frac a b=frac c d=frac {a+c} {b+d}$ and similarly for equality for three fractions. Hence $frac {s-a} 4=frac {s-b} 3=frac {s-c} 2=frac {s-a+s-b+s-c} {4+3+2}=frac {3s-2s} 9$. Now you can get your expressions for $a,b,c$ easily.
$endgroup$
add a comment |
$begingroup$
Let
begin{align}
tfrac14(s-a)=tfrac13(s-b)=tfrac12(s-c)&=k
quadtext{for some }kinmathbb{R}
end{align}
Then we have a linear system of four equations in
four variables
begin{align}
left[
begin{matrix}
1&0&0&4 \
0&1&0&3\
0&0&1&2\
1&1&1&0
end{matrix}
right]
cdot
left[
begin{matrix}
a\b\c\k
end{matrix}
right]
&=
left[
begin{matrix}
s\s\s\2s
end{matrix}
right]
,
end{align}
which can be easily solved with any standard method
and has a solution in terms of $s$:
begin{align}
a &= tfrac59,s
,quad
b = tfrac23,s
,quad
c = tfrac79,s
,quad
k = tfrac19,s
.
end{align}
$endgroup$
add a comment |
$begingroup$
A variation of Kavi Rama Murthy's answer. Denote the fractions by $k$:
$$(s-a)/4=(s-b)/3=(s-c)/2=k Rightarrow \
s-a=4k;\
s-b=3k;\
s-c=2k.$$
Add them to find $k$:
$$3s-2s=9k Rightarrow k=frac{s}{9}.$$
Hence:
$$s-a=frac{4s}{9} Rightarrow a=frac{5s}{9};\
s-b=frac{3s}{9} Rightarrow b=frac{2s}{3};\
s-c=frac{2s}{9} Rightarrow c=frac{7s}{9}.$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044890%2fhow-to-find-a-b-and-c-in-terms-of-the-semi-perimeter-s-from-this-equation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
If $frac a b=frac c d$ then $frac a b=frac c d=frac {a+c} {b+d}$ and similarly for equality for three fractions. Hence $frac {s-a} 4=frac {s-b} 3=frac {s-c} 2=frac {s-a+s-b+s-c} {4+3+2}=frac {3s-2s} 9$. Now you can get your expressions for $a,b,c$ easily.
$endgroup$
add a comment |
$begingroup$
If $frac a b=frac c d$ then $frac a b=frac c d=frac {a+c} {b+d}$ and similarly for equality for three fractions. Hence $frac {s-a} 4=frac {s-b} 3=frac {s-c} 2=frac {s-a+s-b+s-c} {4+3+2}=frac {3s-2s} 9$. Now you can get your expressions for $a,b,c$ easily.
$endgroup$
add a comment |
$begingroup$
If $frac a b=frac c d$ then $frac a b=frac c d=frac {a+c} {b+d}$ and similarly for equality for three fractions. Hence $frac {s-a} 4=frac {s-b} 3=frac {s-c} 2=frac {s-a+s-b+s-c} {4+3+2}=frac {3s-2s} 9$. Now you can get your expressions for $a,b,c$ easily.
$endgroup$
If $frac a b=frac c d$ then $frac a b=frac c d=frac {a+c} {b+d}$ and similarly for equality for three fractions. Hence $frac {s-a} 4=frac {s-b} 3=frac {s-c} 2=frac {s-a+s-b+s-c} {4+3+2}=frac {3s-2s} 9$. Now you can get your expressions for $a,b,c$ easily.
answered Dec 18 '18 at 8:16
Kavi Rama MurthyKavi Rama Murthy
62.9k42362
62.9k42362
add a comment |
add a comment |
$begingroup$
Let
begin{align}
tfrac14(s-a)=tfrac13(s-b)=tfrac12(s-c)&=k
quadtext{for some }kinmathbb{R}
end{align}
Then we have a linear system of four equations in
four variables
begin{align}
left[
begin{matrix}
1&0&0&4 \
0&1&0&3\
0&0&1&2\
1&1&1&0
end{matrix}
right]
cdot
left[
begin{matrix}
a\b\c\k
end{matrix}
right]
&=
left[
begin{matrix}
s\s\s\2s
end{matrix}
right]
,
end{align}
which can be easily solved with any standard method
and has a solution in terms of $s$:
begin{align}
a &= tfrac59,s
,quad
b = tfrac23,s
,quad
c = tfrac79,s
,quad
k = tfrac19,s
.
end{align}
$endgroup$
add a comment |
$begingroup$
Let
begin{align}
tfrac14(s-a)=tfrac13(s-b)=tfrac12(s-c)&=k
quadtext{for some }kinmathbb{R}
end{align}
Then we have a linear system of four equations in
four variables
begin{align}
left[
begin{matrix}
1&0&0&4 \
0&1&0&3\
0&0&1&2\
1&1&1&0
end{matrix}
right]
cdot
left[
begin{matrix}
a\b\c\k
end{matrix}
right]
&=
left[
begin{matrix}
s\s\s\2s
end{matrix}
right]
,
end{align}
which can be easily solved with any standard method
and has a solution in terms of $s$:
begin{align}
a &= tfrac59,s
,quad
b = tfrac23,s
,quad
c = tfrac79,s
,quad
k = tfrac19,s
.
end{align}
$endgroup$
add a comment |
$begingroup$
Let
begin{align}
tfrac14(s-a)=tfrac13(s-b)=tfrac12(s-c)&=k
quadtext{for some }kinmathbb{R}
end{align}
Then we have a linear system of four equations in
four variables
begin{align}
left[
begin{matrix}
1&0&0&4 \
0&1&0&3\
0&0&1&2\
1&1&1&0
end{matrix}
right]
cdot
left[
begin{matrix}
a\b\c\k
end{matrix}
right]
&=
left[
begin{matrix}
s\s\s\2s
end{matrix}
right]
,
end{align}
which can be easily solved with any standard method
and has a solution in terms of $s$:
begin{align}
a &= tfrac59,s
,quad
b = tfrac23,s
,quad
c = tfrac79,s
,quad
k = tfrac19,s
.
end{align}
$endgroup$
Let
begin{align}
tfrac14(s-a)=tfrac13(s-b)=tfrac12(s-c)&=k
quadtext{for some }kinmathbb{R}
end{align}
Then we have a linear system of four equations in
four variables
begin{align}
left[
begin{matrix}
1&0&0&4 \
0&1&0&3\
0&0&1&2\
1&1&1&0
end{matrix}
right]
cdot
left[
begin{matrix}
a\b\c\k
end{matrix}
right]
&=
left[
begin{matrix}
s\s\s\2s
end{matrix}
right]
,
end{align}
which can be easily solved with any standard method
and has a solution in terms of $s$:
begin{align}
a &= tfrac59,s
,quad
b = tfrac23,s
,quad
c = tfrac79,s
,quad
k = tfrac19,s
.
end{align}
answered Dec 18 '18 at 9:07
g.kovg.kov
6,1821818
6,1821818
add a comment |
add a comment |
$begingroup$
A variation of Kavi Rama Murthy's answer. Denote the fractions by $k$:
$$(s-a)/4=(s-b)/3=(s-c)/2=k Rightarrow \
s-a=4k;\
s-b=3k;\
s-c=2k.$$
Add them to find $k$:
$$3s-2s=9k Rightarrow k=frac{s}{9}.$$
Hence:
$$s-a=frac{4s}{9} Rightarrow a=frac{5s}{9};\
s-b=frac{3s}{9} Rightarrow b=frac{2s}{3};\
s-c=frac{2s}{9} Rightarrow c=frac{7s}{9}.$$
$endgroup$
add a comment |
$begingroup$
A variation of Kavi Rama Murthy's answer. Denote the fractions by $k$:
$$(s-a)/4=(s-b)/3=(s-c)/2=k Rightarrow \
s-a=4k;\
s-b=3k;\
s-c=2k.$$
Add them to find $k$:
$$3s-2s=9k Rightarrow k=frac{s}{9}.$$
Hence:
$$s-a=frac{4s}{9} Rightarrow a=frac{5s}{9};\
s-b=frac{3s}{9} Rightarrow b=frac{2s}{3};\
s-c=frac{2s}{9} Rightarrow c=frac{7s}{9}.$$
$endgroup$
add a comment |
$begingroup$
A variation of Kavi Rama Murthy's answer. Denote the fractions by $k$:
$$(s-a)/4=(s-b)/3=(s-c)/2=k Rightarrow \
s-a=4k;\
s-b=3k;\
s-c=2k.$$
Add them to find $k$:
$$3s-2s=9k Rightarrow k=frac{s}{9}.$$
Hence:
$$s-a=frac{4s}{9} Rightarrow a=frac{5s}{9};\
s-b=frac{3s}{9} Rightarrow b=frac{2s}{3};\
s-c=frac{2s}{9} Rightarrow c=frac{7s}{9}.$$
$endgroup$
A variation of Kavi Rama Murthy's answer. Denote the fractions by $k$:
$$(s-a)/4=(s-b)/3=(s-c)/2=k Rightarrow \
s-a=4k;\
s-b=3k;\
s-c=2k.$$
Add them to find $k$:
$$3s-2s=9k Rightarrow k=frac{s}{9}.$$
Hence:
$$s-a=frac{4s}{9} Rightarrow a=frac{5s}{9};\
s-b=frac{3s}{9} Rightarrow b=frac{2s}{3};\
s-c=frac{2s}{9} Rightarrow c=frac{7s}{9}.$$
answered Dec 18 '18 at 13:50
farruhotafarruhota
20.5k2739
20.5k2739
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044890%2fhow-to-find-a-b-and-c-in-terms-of-the-semi-perimeter-s-from-this-equation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown