A mistake I can't find about the Bochner formula












3












$begingroup$


Let $(M^n,g)$ be a Riemannian manifold, and $T$ a symmetric $(1,1)$-tensor field, i.e., $langle T(X),Yrangle = langle X,T(Y)rangle $. For convenience, denote $$Delta_Tu=sum_ilangle nabla_{e_i}nabla u, Te_irangle $$
and
$$mathrm{Ric}_T(X,Y)=sum_ilangle R(X,e_i)(Te_i), Yrangle , $$
where $u$ is a smooth function on $M$ and ${e_i}$ is a local ON frame field.



Now assume that $T$ is a Codazzi operator, i.e., for any $X,Yin Gamma(TM)$, $(nabla_XT)Y=(nabla_YT)X$. We choose ${e_i}_{i=1}^n$ be a local orthonormal frame field of $M$ such that $nabla_{star }e_i=0$ at the considered point. For the distance function r(x) from a fixed point $x_0$, by the definition, we have ($nabla_XT$ is symmetric since $T$ is symmetric)
begin{equation*}
begin{split}
Delta_{nabla_{partial_r}T}r=&sum_{i=1}^nlangle nabla_{e_i}partial_r,(nabla_{partial_r}T)e_irangle=sum_{i=1}^nlangle nabla_{e_i}partial_r,(nabla_{e_i}T)partial_rrangle \
=&sum_{i=1}^ne_ilangle partial_r,(nabla_{e_i}T)partial_rrangle -sum_{i=1}^nlangle partial_r,(nabla_{e_i}nabla_{e_i}T)partial_rrangle -sum_{i=1}^nlangle partial_r,(nabla_{e_i}T)(nabla_{e_i}partial_r)rangle .
end{split}
end{equation*}

However,
begin{equation*}
begin{split}
sum_{i=1}^nlangle partial_r,(nabla_{e_i}T)(nabla_{e_i}partial_r)rangle =&sum_{i=1}^nlangle (nabla_{e_i}T)partial_r,nabla_{e_i}partial_rrangle \
=&sum_{i=1}^nlangle (nabla_{partial_r}T)e_i,nabla_{e_i}partial_rrangle =Delta_{nabla_{partial_r}T}r.
end{split}
end{equation*}

Hence, we obtain
begin{equation}
begin{split}
Delta_{nabla_{partial_r}T}r=frac{1}{2}sum_{i=1}^ne_ilangle partial_r,(nabla_{e_i}T)partial_rrangle -frac{1}{2}sum_{i=1}^nlangle partial_r,(nabla_{e_i}nabla_{e_i}T)partial_rrangle
end{split}
end{equation}

We now compute the two terms of the R.H.S. of the above equality. Firstly, notice that $nabla_{partial_r}partial_r=0$, we have
begin{equation}
begin{split}
sum_{i=1}^ne_ilangle partial_r,(nabla_{e_i}T)partial_rrangle =&sum_{i=1}^ne_ilangle partial_r,(nabla_{partial_r}T)e_irangle =sum_{i=1}^ne_ilangle (nabla_{partial_r}T)partial_r,e_irangle \
=&sum_{i=1}^ne_i (partial_rlangle Tpartial_r, e_irangle )-sum_{i=1}^ne_ilangle Tpartial_r,nabla_{partial_r}e_irangle \
=&sum_{i=1}^npartial_r(e_ilangle Tpartial_r,e_irangle )-sum_{i=1}^nlangle Tpartial_r, nabla_{e_i}nabla_{partial_r}e_irangle \
=&sum_{i=1}^npartial_rlangle (nabla_{e_i}T)partial_r,e_irangle +sum_{i=1}^npartial_rlangle Tnabla_{e_i}partial_r, e_irangle \
&+sum_{i=1}^npartial_rlangle Tpartial_r,nabla_{e_i}e_irangle -sum_{i=1}^nlangle Tpartial_r, nabla_{e_i}nabla_{partial_r}e_irangle \
=&sum_{i=1}^nlangle (nabla_{partial_r}nabla_{e_i}T)partial_r,e_irangle +partial_r(Delta_Tr)\
&+sum_{i=1}^nlangle Tpartial_r,nabla_{partial_r}nabla_{e_i}e_irangle -sum_{i=1}^nlangle Tpartial_r, nabla_{e_i}nabla_{partial_r}e_irangle \
=&sum_{i=1}^nlangle (nabla_{partial_r}nabla_{e_i}T)partial_r,e_irangle +partial_r(Delta_Tr)+mathrm{Ric}(partial_r, Tpartial_r).
end{split}
end{equation}

Secondly,
begin{equation}
begin{split}
sum_{i=1}^nlangle partial_r,(nabla_{e_i}nabla_{e_i}T)partial_rrangle =&sum_{i=1}^nlangle partial_r,nabla_{e_i}((nabla_{e_i}T)partial_r)rangle -sum_{i=1}^nlangle partial_r,(nabla_{e_i}T)nabla_{e_i}partial_rrangle \
=& sum_{i=1}^nlangle partial_r,nabla_{e_i}((nabla_{partial_r}T)e_i)rangle -sum_{i=1}^nlangle partial_r,(nabla_{nabla_{e_i}partial_r}T)e_irangle \
=&sum_{i=1}^nlangle (nabla_{e_i}nabla_{partial_r}T)e_i-(nabla_{nabla_{e_i}partial_r}T)e_i,partial_rrangle \
=&sum_{i=1}^nlangle (nabla_{partial_r}nabla_{e_i}T)e_i,partial_rrangle -sum_{i=1}^nlangle (R(partial_r,e_i)T)e_i,partial_rrangle \
=&sum_{i=1}^nlangle (nabla_{partial_r}nabla_{e_i}T)e_i,partial_rrangle +mathrm{Ric}(partial_r,Tpartial_r)-mathrm{Ric}_T(partial_r,partial_r).
end{split}
end{equation}

From the above three equalities we obtain
begin{equation*}
begin{split}
Delta_{nabla_{partial_r}T}r
=frac{1}{2}partial_r(Delta_Tr)
+frac{1}{2}mathrm{Ric}_T(partial_r,partial_r).
end{split}
end{equation*}



Now, my question is that when $T=mathrm{Id}_{TM}$ the above equation becomes
begin{equation*}
begin{split}
partial_r(Delta_r)+mathrm{Ric}(partial_r,partial_r)=0.
end{split}
end{equation*}

But it is well known that the Bochner formula for the distance function
begin{equation*}
begin{split}
|mathrm{Hess}r|^2+partial_r(Delta_r)+mathrm{Ric}(partial_r,partial_r)=0.
end{split}
end{equation*}

This obtain a contradiction.



What is wrong with the above derivation? Thanks in advence.










share|cite|improve this question











$endgroup$

















    3












    $begingroup$


    Let $(M^n,g)$ be a Riemannian manifold, and $T$ a symmetric $(1,1)$-tensor field, i.e., $langle T(X),Yrangle = langle X,T(Y)rangle $. For convenience, denote $$Delta_Tu=sum_ilangle nabla_{e_i}nabla u, Te_irangle $$
    and
    $$mathrm{Ric}_T(X,Y)=sum_ilangle R(X,e_i)(Te_i), Yrangle , $$
    where $u$ is a smooth function on $M$ and ${e_i}$ is a local ON frame field.



    Now assume that $T$ is a Codazzi operator, i.e., for any $X,Yin Gamma(TM)$, $(nabla_XT)Y=(nabla_YT)X$. We choose ${e_i}_{i=1}^n$ be a local orthonormal frame field of $M$ such that $nabla_{star }e_i=0$ at the considered point. For the distance function r(x) from a fixed point $x_0$, by the definition, we have ($nabla_XT$ is symmetric since $T$ is symmetric)
    begin{equation*}
    begin{split}
    Delta_{nabla_{partial_r}T}r=&sum_{i=1}^nlangle nabla_{e_i}partial_r,(nabla_{partial_r}T)e_irangle=sum_{i=1}^nlangle nabla_{e_i}partial_r,(nabla_{e_i}T)partial_rrangle \
    =&sum_{i=1}^ne_ilangle partial_r,(nabla_{e_i}T)partial_rrangle -sum_{i=1}^nlangle partial_r,(nabla_{e_i}nabla_{e_i}T)partial_rrangle -sum_{i=1}^nlangle partial_r,(nabla_{e_i}T)(nabla_{e_i}partial_r)rangle .
    end{split}
    end{equation*}

    However,
    begin{equation*}
    begin{split}
    sum_{i=1}^nlangle partial_r,(nabla_{e_i}T)(nabla_{e_i}partial_r)rangle =&sum_{i=1}^nlangle (nabla_{e_i}T)partial_r,nabla_{e_i}partial_rrangle \
    =&sum_{i=1}^nlangle (nabla_{partial_r}T)e_i,nabla_{e_i}partial_rrangle =Delta_{nabla_{partial_r}T}r.
    end{split}
    end{equation*}

    Hence, we obtain
    begin{equation}
    begin{split}
    Delta_{nabla_{partial_r}T}r=frac{1}{2}sum_{i=1}^ne_ilangle partial_r,(nabla_{e_i}T)partial_rrangle -frac{1}{2}sum_{i=1}^nlangle partial_r,(nabla_{e_i}nabla_{e_i}T)partial_rrangle
    end{split}
    end{equation}

    We now compute the two terms of the R.H.S. of the above equality. Firstly, notice that $nabla_{partial_r}partial_r=0$, we have
    begin{equation}
    begin{split}
    sum_{i=1}^ne_ilangle partial_r,(nabla_{e_i}T)partial_rrangle =&sum_{i=1}^ne_ilangle partial_r,(nabla_{partial_r}T)e_irangle =sum_{i=1}^ne_ilangle (nabla_{partial_r}T)partial_r,e_irangle \
    =&sum_{i=1}^ne_i (partial_rlangle Tpartial_r, e_irangle )-sum_{i=1}^ne_ilangle Tpartial_r,nabla_{partial_r}e_irangle \
    =&sum_{i=1}^npartial_r(e_ilangle Tpartial_r,e_irangle )-sum_{i=1}^nlangle Tpartial_r, nabla_{e_i}nabla_{partial_r}e_irangle \
    =&sum_{i=1}^npartial_rlangle (nabla_{e_i}T)partial_r,e_irangle +sum_{i=1}^npartial_rlangle Tnabla_{e_i}partial_r, e_irangle \
    &+sum_{i=1}^npartial_rlangle Tpartial_r,nabla_{e_i}e_irangle -sum_{i=1}^nlangle Tpartial_r, nabla_{e_i}nabla_{partial_r}e_irangle \
    =&sum_{i=1}^nlangle (nabla_{partial_r}nabla_{e_i}T)partial_r,e_irangle +partial_r(Delta_Tr)\
    &+sum_{i=1}^nlangle Tpartial_r,nabla_{partial_r}nabla_{e_i}e_irangle -sum_{i=1}^nlangle Tpartial_r, nabla_{e_i}nabla_{partial_r}e_irangle \
    =&sum_{i=1}^nlangle (nabla_{partial_r}nabla_{e_i}T)partial_r,e_irangle +partial_r(Delta_Tr)+mathrm{Ric}(partial_r, Tpartial_r).
    end{split}
    end{equation}

    Secondly,
    begin{equation}
    begin{split}
    sum_{i=1}^nlangle partial_r,(nabla_{e_i}nabla_{e_i}T)partial_rrangle =&sum_{i=1}^nlangle partial_r,nabla_{e_i}((nabla_{e_i}T)partial_r)rangle -sum_{i=1}^nlangle partial_r,(nabla_{e_i}T)nabla_{e_i}partial_rrangle \
    =& sum_{i=1}^nlangle partial_r,nabla_{e_i}((nabla_{partial_r}T)e_i)rangle -sum_{i=1}^nlangle partial_r,(nabla_{nabla_{e_i}partial_r}T)e_irangle \
    =&sum_{i=1}^nlangle (nabla_{e_i}nabla_{partial_r}T)e_i-(nabla_{nabla_{e_i}partial_r}T)e_i,partial_rrangle \
    =&sum_{i=1}^nlangle (nabla_{partial_r}nabla_{e_i}T)e_i,partial_rrangle -sum_{i=1}^nlangle (R(partial_r,e_i)T)e_i,partial_rrangle \
    =&sum_{i=1}^nlangle (nabla_{partial_r}nabla_{e_i}T)e_i,partial_rrangle +mathrm{Ric}(partial_r,Tpartial_r)-mathrm{Ric}_T(partial_r,partial_r).
    end{split}
    end{equation}

    From the above three equalities we obtain
    begin{equation*}
    begin{split}
    Delta_{nabla_{partial_r}T}r
    =frac{1}{2}partial_r(Delta_Tr)
    +frac{1}{2}mathrm{Ric}_T(partial_r,partial_r).
    end{split}
    end{equation*}



    Now, my question is that when $T=mathrm{Id}_{TM}$ the above equation becomes
    begin{equation*}
    begin{split}
    partial_r(Delta_r)+mathrm{Ric}(partial_r,partial_r)=0.
    end{split}
    end{equation*}

    But it is well known that the Bochner formula for the distance function
    begin{equation*}
    begin{split}
    |mathrm{Hess}r|^2+partial_r(Delta_r)+mathrm{Ric}(partial_r,partial_r)=0.
    end{split}
    end{equation*}

    This obtain a contradiction.



    What is wrong with the above derivation? Thanks in advence.










    share|cite|improve this question











    $endgroup$















      3












      3








      3





      $begingroup$


      Let $(M^n,g)$ be a Riemannian manifold, and $T$ a symmetric $(1,1)$-tensor field, i.e., $langle T(X),Yrangle = langle X,T(Y)rangle $. For convenience, denote $$Delta_Tu=sum_ilangle nabla_{e_i}nabla u, Te_irangle $$
      and
      $$mathrm{Ric}_T(X,Y)=sum_ilangle R(X,e_i)(Te_i), Yrangle , $$
      where $u$ is a smooth function on $M$ and ${e_i}$ is a local ON frame field.



      Now assume that $T$ is a Codazzi operator, i.e., for any $X,Yin Gamma(TM)$, $(nabla_XT)Y=(nabla_YT)X$. We choose ${e_i}_{i=1}^n$ be a local orthonormal frame field of $M$ such that $nabla_{star }e_i=0$ at the considered point. For the distance function r(x) from a fixed point $x_0$, by the definition, we have ($nabla_XT$ is symmetric since $T$ is symmetric)
      begin{equation*}
      begin{split}
      Delta_{nabla_{partial_r}T}r=&sum_{i=1}^nlangle nabla_{e_i}partial_r,(nabla_{partial_r}T)e_irangle=sum_{i=1}^nlangle nabla_{e_i}partial_r,(nabla_{e_i}T)partial_rrangle \
      =&sum_{i=1}^ne_ilangle partial_r,(nabla_{e_i}T)partial_rrangle -sum_{i=1}^nlangle partial_r,(nabla_{e_i}nabla_{e_i}T)partial_rrangle -sum_{i=1}^nlangle partial_r,(nabla_{e_i}T)(nabla_{e_i}partial_r)rangle .
      end{split}
      end{equation*}

      However,
      begin{equation*}
      begin{split}
      sum_{i=1}^nlangle partial_r,(nabla_{e_i}T)(nabla_{e_i}partial_r)rangle =&sum_{i=1}^nlangle (nabla_{e_i}T)partial_r,nabla_{e_i}partial_rrangle \
      =&sum_{i=1}^nlangle (nabla_{partial_r}T)e_i,nabla_{e_i}partial_rrangle =Delta_{nabla_{partial_r}T}r.
      end{split}
      end{equation*}

      Hence, we obtain
      begin{equation}
      begin{split}
      Delta_{nabla_{partial_r}T}r=frac{1}{2}sum_{i=1}^ne_ilangle partial_r,(nabla_{e_i}T)partial_rrangle -frac{1}{2}sum_{i=1}^nlangle partial_r,(nabla_{e_i}nabla_{e_i}T)partial_rrangle
      end{split}
      end{equation}

      We now compute the two terms of the R.H.S. of the above equality. Firstly, notice that $nabla_{partial_r}partial_r=0$, we have
      begin{equation}
      begin{split}
      sum_{i=1}^ne_ilangle partial_r,(nabla_{e_i}T)partial_rrangle =&sum_{i=1}^ne_ilangle partial_r,(nabla_{partial_r}T)e_irangle =sum_{i=1}^ne_ilangle (nabla_{partial_r}T)partial_r,e_irangle \
      =&sum_{i=1}^ne_i (partial_rlangle Tpartial_r, e_irangle )-sum_{i=1}^ne_ilangle Tpartial_r,nabla_{partial_r}e_irangle \
      =&sum_{i=1}^npartial_r(e_ilangle Tpartial_r,e_irangle )-sum_{i=1}^nlangle Tpartial_r, nabla_{e_i}nabla_{partial_r}e_irangle \
      =&sum_{i=1}^npartial_rlangle (nabla_{e_i}T)partial_r,e_irangle +sum_{i=1}^npartial_rlangle Tnabla_{e_i}partial_r, e_irangle \
      &+sum_{i=1}^npartial_rlangle Tpartial_r,nabla_{e_i}e_irangle -sum_{i=1}^nlangle Tpartial_r, nabla_{e_i}nabla_{partial_r}e_irangle \
      =&sum_{i=1}^nlangle (nabla_{partial_r}nabla_{e_i}T)partial_r,e_irangle +partial_r(Delta_Tr)\
      &+sum_{i=1}^nlangle Tpartial_r,nabla_{partial_r}nabla_{e_i}e_irangle -sum_{i=1}^nlangle Tpartial_r, nabla_{e_i}nabla_{partial_r}e_irangle \
      =&sum_{i=1}^nlangle (nabla_{partial_r}nabla_{e_i}T)partial_r,e_irangle +partial_r(Delta_Tr)+mathrm{Ric}(partial_r, Tpartial_r).
      end{split}
      end{equation}

      Secondly,
      begin{equation}
      begin{split}
      sum_{i=1}^nlangle partial_r,(nabla_{e_i}nabla_{e_i}T)partial_rrangle =&sum_{i=1}^nlangle partial_r,nabla_{e_i}((nabla_{e_i}T)partial_r)rangle -sum_{i=1}^nlangle partial_r,(nabla_{e_i}T)nabla_{e_i}partial_rrangle \
      =& sum_{i=1}^nlangle partial_r,nabla_{e_i}((nabla_{partial_r}T)e_i)rangle -sum_{i=1}^nlangle partial_r,(nabla_{nabla_{e_i}partial_r}T)e_irangle \
      =&sum_{i=1}^nlangle (nabla_{e_i}nabla_{partial_r}T)e_i-(nabla_{nabla_{e_i}partial_r}T)e_i,partial_rrangle \
      =&sum_{i=1}^nlangle (nabla_{partial_r}nabla_{e_i}T)e_i,partial_rrangle -sum_{i=1}^nlangle (R(partial_r,e_i)T)e_i,partial_rrangle \
      =&sum_{i=1}^nlangle (nabla_{partial_r}nabla_{e_i}T)e_i,partial_rrangle +mathrm{Ric}(partial_r,Tpartial_r)-mathrm{Ric}_T(partial_r,partial_r).
      end{split}
      end{equation}

      From the above three equalities we obtain
      begin{equation*}
      begin{split}
      Delta_{nabla_{partial_r}T}r
      =frac{1}{2}partial_r(Delta_Tr)
      +frac{1}{2}mathrm{Ric}_T(partial_r,partial_r).
      end{split}
      end{equation*}



      Now, my question is that when $T=mathrm{Id}_{TM}$ the above equation becomes
      begin{equation*}
      begin{split}
      partial_r(Delta_r)+mathrm{Ric}(partial_r,partial_r)=0.
      end{split}
      end{equation*}

      But it is well known that the Bochner formula for the distance function
      begin{equation*}
      begin{split}
      |mathrm{Hess}r|^2+partial_r(Delta_r)+mathrm{Ric}(partial_r,partial_r)=0.
      end{split}
      end{equation*}

      This obtain a contradiction.



      What is wrong with the above derivation? Thanks in advence.










      share|cite|improve this question











      $endgroup$




      Let $(M^n,g)$ be a Riemannian manifold, and $T$ a symmetric $(1,1)$-tensor field, i.e., $langle T(X),Yrangle = langle X,T(Y)rangle $. For convenience, denote $$Delta_Tu=sum_ilangle nabla_{e_i}nabla u, Te_irangle $$
      and
      $$mathrm{Ric}_T(X,Y)=sum_ilangle R(X,e_i)(Te_i), Yrangle , $$
      where $u$ is a smooth function on $M$ and ${e_i}$ is a local ON frame field.



      Now assume that $T$ is a Codazzi operator, i.e., for any $X,Yin Gamma(TM)$, $(nabla_XT)Y=(nabla_YT)X$. We choose ${e_i}_{i=1}^n$ be a local orthonormal frame field of $M$ such that $nabla_{star }e_i=0$ at the considered point. For the distance function r(x) from a fixed point $x_0$, by the definition, we have ($nabla_XT$ is symmetric since $T$ is symmetric)
      begin{equation*}
      begin{split}
      Delta_{nabla_{partial_r}T}r=&sum_{i=1}^nlangle nabla_{e_i}partial_r,(nabla_{partial_r}T)e_irangle=sum_{i=1}^nlangle nabla_{e_i}partial_r,(nabla_{e_i}T)partial_rrangle \
      =&sum_{i=1}^ne_ilangle partial_r,(nabla_{e_i}T)partial_rrangle -sum_{i=1}^nlangle partial_r,(nabla_{e_i}nabla_{e_i}T)partial_rrangle -sum_{i=1}^nlangle partial_r,(nabla_{e_i}T)(nabla_{e_i}partial_r)rangle .
      end{split}
      end{equation*}

      However,
      begin{equation*}
      begin{split}
      sum_{i=1}^nlangle partial_r,(nabla_{e_i}T)(nabla_{e_i}partial_r)rangle =&sum_{i=1}^nlangle (nabla_{e_i}T)partial_r,nabla_{e_i}partial_rrangle \
      =&sum_{i=1}^nlangle (nabla_{partial_r}T)e_i,nabla_{e_i}partial_rrangle =Delta_{nabla_{partial_r}T}r.
      end{split}
      end{equation*}

      Hence, we obtain
      begin{equation}
      begin{split}
      Delta_{nabla_{partial_r}T}r=frac{1}{2}sum_{i=1}^ne_ilangle partial_r,(nabla_{e_i}T)partial_rrangle -frac{1}{2}sum_{i=1}^nlangle partial_r,(nabla_{e_i}nabla_{e_i}T)partial_rrangle
      end{split}
      end{equation}

      We now compute the two terms of the R.H.S. of the above equality. Firstly, notice that $nabla_{partial_r}partial_r=0$, we have
      begin{equation}
      begin{split}
      sum_{i=1}^ne_ilangle partial_r,(nabla_{e_i}T)partial_rrangle =&sum_{i=1}^ne_ilangle partial_r,(nabla_{partial_r}T)e_irangle =sum_{i=1}^ne_ilangle (nabla_{partial_r}T)partial_r,e_irangle \
      =&sum_{i=1}^ne_i (partial_rlangle Tpartial_r, e_irangle )-sum_{i=1}^ne_ilangle Tpartial_r,nabla_{partial_r}e_irangle \
      =&sum_{i=1}^npartial_r(e_ilangle Tpartial_r,e_irangle )-sum_{i=1}^nlangle Tpartial_r, nabla_{e_i}nabla_{partial_r}e_irangle \
      =&sum_{i=1}^npartial_rlangle (nabla_{e_i}T)partial_r,e_irangle +sum_{i=1}^npartial_rlangle Tnabla_{e_i}partial_r, e_irangle \
      &+sum_{i=1}^npartial_rlangle Tpartial_r,nabla_{e_i}e_irangle -sum_{i=1}^nlangle Tpartial_r, nabla_{e_i}nabla_{partial_r}e_irangle \
      =&sum_{i=1}^nlangle (nabla_{partial_r}nabla_{e_i}T)partial_r,e_irangle +partial_r(Delta_Tr)\
      &+sum_{i=1}^nlangle Tpartial_r,nabla_{partial_r}nabla_{e_i}e_irangle -sum_{i=1}^nlangle Tpartial_r, nabla_{e_i}nabla_{partial_r}e_irangle \
      =&sum_{i=1}^nlangle (nabla_{partial_r}nabla_{e_i}T)partial_r,e_irangle +partial_r(Delta_Tr)+mathrm{Ric}(partial_r, Tpartial_r).
      end{split}
      end{equation}

      Secondly,
      begin{equation}
      begin{split}
      sum_{i=1}^nlangle partial_r,(nabla_{e_i}nabla_{e_i}T)partial_rrangle =&sum_{i=1}^nlangle partial_r,nabla_{e_i}((nabla_{e_i}T)partial_r)rangle -sum_{i=1}^nlangle partial_r,(nabla_{e_i}T)nabla_{e_i}partial_rrangle \
      =& sum_{i=1}^nlangle partial_r,nabla_{e_i}((nabla_{partial_r}T)e_i)rangle -sum_{i=1}^nlangle partial_r,(nabla_{nabla_{e_i}partial_r}T)e_irangle \
      =&sum_{i=1}^nlangle (nabla_{e_i}nabla_{partial_r}T)e_i-(nabla_{nabla_{e_i}partial_r}T)e_i,partial_rrangle \
      =&sum_{i=1}^nlangle (nabla_{partial_r}nabla_{e_i}T)e_i,partial_rrangle -sum_{i=1}^nlangle (R(partial_r,e_i)T)e_i,partial_rrangle \
      =&sum_{i=1}^nlangle (nabla_{partial_r}nabla_{e_i}T)e_i,partial_rrangle +mathrm{Ric}(partial_r,Tpartial_r)-mathrm{Ric}_T(partial_r,partial_r).
      end{split}
      end{equation}

      From the above three equalities we obtain
      begin{equation*}
      begin{split}
      Delta_{nabla_{partial_r}T}r
      =frac{1}{2}partial_r(Delta_Tr)
      +frac{1}{2}mathrm{Ric}_T(partial_r,partial_r).
      end{split}
      end{equation*}



      Now, my question is that when $T=mathrm{Id}_{TM}$ the above equation becomes
      begin{equation*}
      begin{split}
      partial_r(Delta_r)+mathrm{Ric}(partial_r,partial_r)=0.
      end{split}
      end{equation*}

      But it is well known that the Bochner formula for the distance function
      begin{equation*}
      begin{split}
      |mathrm{Hess}r|^2+partial_r(Delta_r)+mathrm{Ric}(partial_r,partial_r)=0.
      end{split}
      end{equation*}

      This obtain a contradiction.



      What is wrong with the above derivation? Thanks in advence.







      differential-geometry riemannian-geometry






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 18 '18 at 7:10







      G. Zhao

















      asked Dec 18 '18 at 6:34









      G. ZhaoG. Zhao

      234




      234






















          0






          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044849%2fa-mistake-i-cant-find-about-the-bochner-formula%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044849%2fa-mistake-i-cant-find-about-the-bochner-formula%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Probability when a professor distributes a quiz and homework assignment to a class of n students.

          Aardman Animations

          Are they similar matrix