$sum_{n=1}^infty frac{(-1)^n pi^{n+1}}{2^n (2n-1)!}$ with complex analysis?
$begingroup$
How do I go about evaluating this sum using complex analysis techniques? It is clear that it converges thanks to the ratio test, however I am unsure of how to arrive at the following answer. Thank you.
The answer is $-frac{pi^{3/2} sinbig(sqrt{frac{pi}{2}}big)}{sqrt{2}}$.
sequences-and-series complex-analysis
$endgroup$
add a comment |
$begingroup$
How do I go about evaluating this sum using complex analysis techniques? It is clear that it converges thanks to the ratio test, however I am unsure of how to arrive at the following answer. Thank you.
The answer is $-frac{pi^{3/2} sinbig(sqrt{frac{pi}{2}}big)}{sqrt{2}}$.
sequences-and-series complex-analysis
$endgroup$
3
$begingroup$
Just write the power series for $sin(z)$ and choose $z$ to make it match with your series, up to a constant coefficient. Easier than you might think. Note that $(-1)^npi^n/2^n$ can be written $a^n$.
$endgroup$
– Jean-Claude Arbaut
Dec 3 '18 at 1:47
$begingroup$
Thank you @Jean-ClaudeArbaut. That was a great observation. Do you realize a similar observation with $sum_{n=1}^infty frac{n pi^n}{(2e)^n}$?
$endgroup$
– Darkdub
Dec 3 '18 at 11:38
2
$begingroup$
Differentiate $sum_{n=1}^infty x^n$ and note that $pi/(2e)<1$.
$endgroup$
– Jean-Claude Arbaut
Dec 3 '18 at 11:38
add a comment |
$begingroup$
How do I go about evaluating this sum using complex analysis techniques? It is clear that it converges thanks to the ratio test, however I am unsure of how to arrive at the following answer. Thank you.
The answer is $-frac{pi^{3/2} sinbig(sqrt{frac{pi}{2}}big)}{sqrt{2}}$.
sequences-and-series complex-analysis
$endgroup$
How do I go about evaluating this sum using complex analysis techniques? It is clear that it converges thanks to the ratio test, however I am unsure of how to arrive at the following answer. Thank you.
The answer is $-frac{pi^{3/2} sinbig(sqrt{frac{pi}{2}}big)}{sqrt{2}}$.
sequences-and-series complex-analysis
sequences-and-series complex-analysis
asked Dec 3 '18 at 1:45
DarkdubDarkdub
9816
9816
3
$begingroup$
Just write the power series for $sin(z)$ and choose $z$ to make it match with your series, up to a constant coefficient. Easier than you might think. Note that $(-1)^npi^n/2^n$ can be written $a^n$.
$endgroup$
– Jean-Claude Arbaut
Dec 3 '18 at 1:47
$begingroup$
Thank you @Jean-ClaudeArbaut. That was a great observation. Do you realize a similar observation with $sum_{n=1}^infty frac{n pi^n}{(2e)^n}$?
$endgroup$
– Darkdub
Dec 3 '18 at 11:38
2
$begingroup$
Differentiate $sum_{n=1}^infty x^n$ and note that $pi/(2e)<1$.
$endgroup$
– Jean-Claude Arbaut
Dec 3 '18 at 11:38
add a comment |
3
$begingroup$
Just write the power series for $sin(z)$ and choose $z$ to make it match with your series, up to a constant coefficient. Easier than you might think. Note that $(-1)^npi^n/2^n$ can be written $a^n$.
$endgroup$
– Jean-Claude Arbaut
Dec 3 '18 at 1:47
$begingroup$
Thank you @Jean-ClaudeArbaut. That was a great observation. Do you realize a similar observation with $sum_{n=1}^infty frac{n pi^n}{(2e)^n}$?
$endgroup$
– Darkdub
Dec 3 '18 at 11:38
2
$begingroup$
Differentiate $sum_{n=1}^infty x^n$ and note that $pi/(2e)<1$.
$endgroup$
– Jean-Claude Arbaut
Dec 3 '18 at 11:38
3
3
$begingroup$
Just write the power series for $sin(z)$ and choose $z$ to make it match with your series, up to a constant coefficient. Easier than you might think. Note that $(-1)^npi^n/2^n$ can be written $a^n$.
$endgroup$
– Jean-Claude Arbaut
Dec 3 '18 at 1:47
$begingroup$
Just write the power series for $sin(z)$ and choose $z$ to make it match with your series, up to a constant coefficient. Easier than you might think. Note that $(-1)^npi^n/2^n$ can be written $a^n$.
$endgroup$
– Jean-Claude Arbaut
Dec 3 '18 at 1:47
$begingroup$
Thank you @Jean-ClaudeArbaut. That was a great observation. Do you realize a similar observation with $sum_{n=1}^infty frac{n pi^n}{(2e)^n}$?
$endgroup$
– Darkdub
Dec 3 '18 at 11:38
$begingroup$
Thank you @Jean-ClaudeArbaut. That was a great observation. Do you realize a similar observation with $sum_{n=1}^infty frac{n pi^n}{(2e)^n}$?
$endgroup$
– Darkdub
Dec 3 '18 at 11:38
2
2
$begingroup$
Differentiate $sum_{n=1}^infty x^n$ and note that $pi/(2e)<1$.
$endgroup$
– Jean-Claude Arbaut
Dec 3 '18 at 11:38
$begingroup$
Differentiate $sum_{n=1}^infty x^n$ and note that $pi/(2e)<1$.
$endgroup$
– Jean-Claude Arbaut
Dec 3 '18 at 11:38
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Someone has already posted the same answer, but I spent 10 minutes on this, and I'm not about to just delete it.
First of all we recall that, for all $x$,
$$sin x=sum_{ngeq0}frac{(-1)^nx^{2n+1}}{(2n+1)!}$$
Hence we have that
$$
begin{align}
frac{-pi^{3/2}}{2^{1/2}}sinsqrt{fracpi2}=&-frac{pi^{3/2}}{2^{1/2}}sum_{ngeq0}frac{(-1)^n}{(2n+1)!}bigg(frac{pi^{1/2}}{2^{1/2}}bigg)^{2n+1}\
=&frac{pi^{3/2}}{2^{1/2}}sum_{ngeq0}frac{(-1)^{n+1}}{(2n+1)!}frac{pi^{frac{2n+1}2}}{2^{frac{2n+1}2}}\
=&sum_{ngeq0}frac{(-1)^{n+1}}{(2n+1)!}frac{pi^{frac{2n+4}2}}{2^{frac{2n+2}2}}\
=&sum_{ngeq0}frac{(-1)^{n+1}}{(2n+1)!}frac{pi^{n+2}}{2^{n+1}}\
=&sum_{mgeq1}frac{(-1)^m}{(2m-1)!}frac{pi^{m+1}}{2^m}
end{align}
$$
This last step coming from the change of index $n=m-1$
$endgroup$
1
$begingroup$
G Cab posted their answer just when I was about to post mine, and so I made a similar decision. :)
$endgroup$
– Matt A Pelto
Dec 3 '18 at 2:34
2
$begingroup$
@MattAPelto Great minds think alike ;)
$endgroup$
– clathratus
Dec 3 '18 at 2:35
add a comment |
$begingroup$
The Taylor series for $sin(z)$ centered at $0$ is $sum_{n=0}^infty frac{(-1)^n }{ (2n+1)!}z^{2n+1}$.
So for the given series, we have
begin{aligned}sum_{n=1}^infty frac{(-1)^n pi^{n+1}}{2^n (2n-1)!}&=sum_{n=0}^infty frac{(-1)^{n+1} pi^{n+2}}{2^{n+1} (2(n+1)-1)!}
\&= -sqrt{frac{pi^3}{2}}sum_{n=0}^infty frac{(-1)^n }{(2n+1)!}left(sqrt{frac{pi}{2}}right)^{2n+1}
\&=-sqrt{frac{pi^3}{2}}sinleft(sqrt{frac{pi}{2}}right)end{aligned}
$endgroup$
add a comment |
$begingroup$
$$
eqalign{
& sumlimits_{1, le ,n} {{{left( { - 1} right)^n pi ^{,n + 1} } over {2^{,n} left( {2n - 1} right)!}}}
= sumlimits_{0, le ,n} {{{left( { - 1} right)^{n + 1} pi ^{,n + 2} } over {2^{,n + 1} left( {2n + 1} right)!}}} = cr
& = pi sumlimits_{0, le ,n} {{{i^{,2n + 2} sqrt {pi /2} ^{,2n + 2} } over {left( {2n + 1} right)!}}}
= i,pi sqrt {pi /2} sumlimits_{0, le ,n} {{{i^{,2n + 1} sqrt {pi /2} ^{,2n + 1} } over {left( {2n + 1} right)!}}} = cr
& = i,pi sqrt {pi /2} sinh left( {isqrt {pi /2} } right) = - ,pi sqrt {pi /2} sin left( {sqrt {pi /2} } right) cr}
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3023492%2fsum-n-1-infty-frac-1n-pin12n-2n-1-with-complex-analysis%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Someone has already posted the same answer, but I spent 10 minutes on this, and I'm not about to just delete it.
First of all we recall that, for all $x$,
$$sin x=sum_{ngeq0}frac{(-1)^nx^{2n+1}}{(2n+1)!}$$
Hence we have that
$$
begin{align}
frac{-pi^{3/2}}{2^{1/2}}sinsqrt{fracpi2}=&-frac{pi^{3/2}}{2^{1/2}}sum_{ngeq0}frac{(-1)^n}{(2n+1)!}bigg(frac{pi^{1/2}}{2^{1/2}}bigg)^{2n+1}\
=&frac{pi^{3/2}}{2^{1/2}}sum_{ngeq0}frac{(-1)^{n+1}}{(2n+1)!}frac{pi^{frac{2n+1}2}}{2^{frac{2n+1}2}}\
=&sum_{ngeq0}frac{(-1)^{n+1}}{(2n+1)!}frac{pi^{frac{2n+4}2}}{2^{frac{2n+2}2}}\
=&sum_{ngeq0}frac{(-1)^{n+1}}{(2n+1)!}frac{pi^{n+2}}{2^{n+1}}\
=&sum_{mgeq1}frac{(-1)^m}{(2m-1)!}frac{pi^{m+1}}{2^m}
end{align}
$$
This last step coming from the change of index $n=m-1$
$endgroup$
1
$begingroup$
G Cab posted their answer just when I was about to post mine, and so I made a similar decision. :)
$endgroup$
– Matt A Pelto
Dec 3 '18 at 2:34
2
$begingroup$
@MattAPelto Great minds think alike ;)
$endgroup$
– clathratus
Dec 3 '18 at 2:35
add a comment |
$begingroup$
Someone has already posted the same answer, but I spent 10 minutes on this, and I'm not about to just delete it.
First of all we recall that, for all $x$,
$$sin x=sum_{ngeq0}frac{(-1)^nx^{2n+1}}{(2n+1)!}$$
Hence we have that
$$
begin{align}
frac{-pi^{3/2}}{2^{1/2}}sinsqrt{fracpi2}=&-frac{pi^{3/2}}{2^{1/2}}sum_{ngeq0}frac{(-1)^n}{(2n+1)!}bigg(frac{pi^{1/2}}{2^{1/2}}bigg)^{2n+1}\
=&frac{pi^{3/2}}{2^{1/2}}sum_{ngeq0}frac{(-1)^{n+1}}{(2n+1)!}frac{pi^{frac{2n+1}2}}{2^{frac{2n+1}2}}\
=&sum_{ngeq0}frac{(-1)^{n+1}}{(2n+1)!}frac{pi^{frac{2n+4}2}}{2^{frac{2n+2}2}}\
=&sum_{ngeq0}frac{(-1)^{n+1}}{(2n+1)!}frac{pi^{n+2}}{2^{n+1}}\
=&sum_{mgeq1}frac{(-1)^m}{(2m-1)!}frac{pi^{m+1}}{2^m}
end{align}
$$
This last step coming from the change of index $n=m-1$
$endgroup$
1
$begingroup$
G Cab posted their answer just when I was about to post mine, and so I made a similar decision. :)
$endgroup$
– Matt A Pelto
Dec 3 '18 at 2:34
2
$begingroup$
@MattAPelto Great minds think alike ;)
$endgroup$
– clathratus
Dec 3 '18 at 2:35
add a comment |
$begingroup$
Someone has already posted the same answer, but I spent 10 minutes on this, and I'm not about to just delete it.
First of all we recall that, for all $x$,
$$sin x=sum_{ngeq0}frac{(-1)^nx^{2n+1}}{(2n+1)!}$$
Hence we have that
$$
begin{align}
frac{-pi^{3/2}}{2^{1/2}}sinsqrt{fracpi2}=&-frac{pi^{3/2}}{2^{1/2}}sum_{ngeq0}frac{(-1)^n}{(2n+1)!}bigg(frac{pi^{1/2}}{2^{1/2}}bigg)^{2n+1}\
=&frac{pi^{3/2}}{2^{1/2}}sum_{ngeq0}frac{(-1)^{n+1}}{(2n+1)!}frac{pi^{frac{2n+1}2}}{2^{frac{2n+1}2}}\
=&sum_{ngeq0}frac{(-1)^{n+1}}{(2n+1)!}frac{pi^{frac{2n+4}2}}{2^{frac{2n+2}2}}\
=&sum_{ngeq0}frac{(-1)^{n+1}}{(2n+1)!}frac{pi^{n+2}}{2^{n+1}}\
=&sum_{mgeq1}frac{(-1)^m}{(2m-1)!}frac{pi^{m+1}}{2^m}
end{align}
$$
This last step coming from the change of index $n=m-1$
$endgroup$
Someone has already posted the same answer, but I spent 10 minutes on this, and I'm not about to just delete it.
First of all we recall that, for all $x$,
$$sin x=sum_{ngeq0}frac{(-1)^nx^{2n+1}}{(2n+1)!}$$
Hence we have that
$$
begin{align}
frac{-pi^{3/2}}{2^{1/2}}sinsqrt{fracpi2}=&-frac{pi^{3/2}}{2^{1/2}}sum_{ngeq0}frac{(-1)^n}{(2n+1)!}bigg(frac{pi^{1/2}}{2^{1/2}}bigg)^{2n+1}\
=&frac{pi^{3/2}}{2^{1/2}}sum_{ngeq0}frac{(-1)^{n+1}}{(2n+1)!}frac{pi^{frac{2n+1}2}}{2^{frac{2n+1}2}}\
=&sum_{ngeq0}frac{(-1)^{n+1}}{(2n+1)!}frac{pi^{frac{2n+4}2}}{2^{frac{2n+2}2}}\
=&sum_{ngeq0}frac{(-1)^{n+1}}{(2n+1)!}frac{pi^{n+2}}{2^{n+1}}\
=&sum_{mgeq1}frac{(-1)^m}{(2m-1)!}frac{pi^{m+1}}{2^m}
end{align}
$$
This last step coming from the change of index $n=m-1$
answered Dec 3 '18 at 2:28
clathratusclathratus
3,551332
3,551332
1
$begingroup$
G Cab posted their answer just when I was about to post mine, and so I made a similar decision. :)
$endgroup$
– Matt A Pelto
Dec 3 '18 at 2:34
2
$begingroup$
@MattAPelto Great minds think alike ;)
$endgroup$
– clathratus
Dec 3 '18 at 2:35
add a comment |
1
$begingroup$
G Cab posted their answer just when I was about to post mine, and so I made a similar decision. :)
$endgroup$
– Matt A Pelto
Dec 3 '18 at 2:34
2
$begingroup$
@MattAPelto Great minds think alike ;)
$endgroup$
– clathratus
Dec 3 '18 at 2:35
1
1
$begingroup$
G Cab posted their answer just when I was about to post mine, and so I made a similar decision. :)
$endgroup$
– Matt A Pelto
Dec 3 '18 at 2:34
$begingroup$
G Cab posted their answer just when I was about to post mine, and so I made a similar decision. :)
$endgroup$
– Matt A Pelto
Dec 3 '18 at 2:34
2
2
$begingroup$
@MattAPelto Great minds think alike ;)
$endgroup$
– clathratus
Dec 3 '18 at 2:35
$begingroup$
@MattAPelto Great minds think alike ;)
$endgroup$
– clathratus
Dec 3 '18 at 2:35
add a comment |
$begingroup$
The Taylor series for $sin(z)$ centered at $0$ is $sum_{n=0}^infty frac{(-1)^n }{ (2n+1)!}z^{2n+1}$.
So for the given series, we have
begin{aligned}sum_{n=1}^infty frac{(-1)^n pi^{n+1}}{2^n (2n-1)!}&=sum_{n=0}^infty frac{(-1)^{n+1} pi^{n+2}}{2^{n+1} (2(n+1)-1)!}
\&= -sqrt{frac{pi^3}{2}}sum_{n=0}^infty frac{(-1)^n }{(2n+1)!}left(sqrt{frac{pi}{2}}right)^{2n+1}
\&=-sqrt{frac{pi^3}{2}}sinleft(sqrt{frac{pi}{2}}right)end{aligned}
$endgroup$
add a comment |
$begingroup$
The Taylor series for $sin(z)$ centered at $0$ is $sum_{n=0}^infty frac{(-1)^n }{ (2n+1)!}z^{2n+1}$.
So for the given series, we have
begin{aligned}sum_{n=1}^infty frac{(-1)^n pi^{n+1}}{2^n (2n-1)!}&=sum_{n=0}^infty frac{(-1)^{n+1} pi^{n+2}}{2^{n+1} (2(n+1)-1)!}
\&= -sqrt{frac{pi^3}{2}}sum_{n=0}^infty frac{(-1)^n }{(2n+1)!}left(sqrt{frac{pi}{2}}right)^{2n+1}
\&=-sqrt{frac{pi^3}{2}}sinleft(sqrt{frac{pi}{2}}right)end{aligned}
$endgroup$
add a comment |
$begingroup$
The Taylor series for $sin(z)$ centered at $0$ is $sum_{n=0}^infty frac{(-1)^n }{ (2n+1)!}z^{2n+1}$.
So for the given series, we have
begin{aligned}sum_{n=1}^infty frac{(-1)^n pi^{n+1}}{2^n (2n-1)!}&=sum_{n=0}^infty frac{(-1)^{n+1} pi^{n+2}}{2^{n+1} (2(n+1)-1)!}
\&= -sqrt{frac{pi^3}{2}}sum_{n=0}^infty frac{(-1)^n }{(2n+1)!}left(sqrt{frac{pi}{2}}right)^{2n+1}
\&=-sqrt{frac{pi^3}{2}}sinleft(sqrt{frac{pi}{2}}right)end{aligned}
$endgroup$
The Taylor series for $sin(z)$ centered at $0$ is $sum_{n=0}^infty frac{(-1)^n }{ (2n+1)!}z^{2n+1}$.
So for the given series, we have
begin{aligned}sum_{n=1}^infty frac{(-1)^n pi^{n+1}}{2^n (2n-1)!}&=sum_{n=0}^infty frac{(-1)^{n+1} pi^{n+2}}{2^{n+1} (2(n+1)-1)!}
\&= -sqrt{frac{pi^3}{2}}sum_{n=0}^infty frac{(-1)^n }{(2n+1)!}left(sqrt{frac{pi}{2}}right)^{2n+1}
\&=-sqrt{frac{pi^3}{2}}sinleft(sqrt{frac{pi}{2}}right)end{aligned}
answered Dec 3 '18 at 2:21
Matt A PeltoMatt A Pelto
2,477620
2,477620
add a comment |
add a comment |
$begingroup$
$$
eqalign{
& sumlimits_{1, le ,n} {{{left( { - 1} right)^n pi ^{,n + 1} } over {2^{,n} left( {2n - 1} right)!}}}
= sumlimits_{0, le ,n} {{{left( { - 1} right)^{n + 1} pi ^{,n + 2} } over {2^{,n + 1} left( {2n + 1} right)!}}} = cr
& = pi sumlimits_{0, le ,n} {{{i^{,2n + 2} sqrt {pi /2} ^{,2n + 2} } over {left( {2n + 1} right)!}}}
= i,pi sqrt {pi /2} sumlimits_{0, le ,n} {{{i^{,2n + 1} sqrt {pi /2} ^{,2n + 1} } over {left( {2n + 1} right)!}}} = cr
& = i,pi sqrt {pi /2} sinh left( {isqrt {pi /2} } right) = - ,pi sqrt {pi /2} sin left( {sqrt {pi /2} } right) cr}
$$
$endgroup$
add a comment |
$begingroup$
$$
eqalign{
& sumlimits_{1, le ,n} {{{left( { - 1} right)^n pi ^{,n + 1} } over {2^{,n} left( {2n - 1} right)!}}}
= sumlimits_{0, le ,n} {{{left( { - 1} right)^{n + 1} pi ^{,n + 2} } over {2^{,n + 1} left( {2n + 1} right)!}}} = cr
& = pi sumlimits_{0, le ,n} {{{i^{,2n + 2} sqrt {pi /2} ^{,2n + 2} } over {left( {2n + 1} right)!}}}
= i,pi sqrt {pi /2} sumlimits_{0, le ,n} {{{i^{,2n + 1} sqrt {pi /2} ^{,2n + 1} } over {left( {2n + 1} right)!}}} = cr
& = i,pi sqrt {pi /2} sinh left( {isqrt {pi /2} } right) = - ,pi sqrt {pi /2} sin left( {sqrt {pi /2} } right) cr}
$$
$endgroup$
add a comment |
$begingroup$
$$
eqalign{
& sumlimits_{1, le ,n} {{{left( { - 1} right)^n pi ^{,n + 1} } over {2^{,n} left( {2n - 1} right)!}}}
= sumlimits_{0, le ,n} {{{left( { - 1} right)^{n + 1} pi ^{,n + 2} } over {2^{,n + 1} left( {2n + 1} right)!}}} = cr
& = pi sumlimits_{0, le ,n} {{{i^{,2n + 2} sqrt {pi /2} ^{,2n + 2} } over {left( {2n + 1} right)!}}}
= i,pi sqrt {pi /2} sumlimits_{0, le ,n} {{{i^{,2n + 1} sqrt {pi /2} ^{,2n + 1} } over {left( {2n + 1} right)!}}} = cr
& = i,pi sqrt {pi /2} sinh left( {isqrt {pi /2} } right) = - ,pi sqrt {pi /2} sin left( {sqrt {pi /2} } right) cr}
$$
$endgroup$
$$
eqalign{
& sumlimits_{1, le ,n} {{{left( { - 1} right)^n pi ^{,n + 1} } over {2^{,n} left( {2n - 1} right)!}}}
= sumlimits_{0, le ,n} {{{left( { - 1} right)^{n + 1} pi ^{,n + 2} } over {2^{,n + 1} left( {2n + 1} right)!}}} = cr
& = pi sumlimits_{0, le ,n} {{{i^{,2n + 2} sqrt {pi /2} ^{,2n + 2} } over {left( {2n + 1} right)!}}}
= i,pi sqrt {pi /2} sumlimits_{0, le ,n} {{{i^{,2n + 1} sqrt {pi /2} ^{,2n + 1} } over {left( {2n + 1} right)!}}} = cr
& = i,pi sqrt {pi /2} sinh left( {isqrt {pi /2} } right) = - ,pi sqrt {pi /2} sin left( {sqrt {pi /2} } right) cr}
$$
answered Dec 3 '18 at 2:20
G CabG Cab
18.3k31237
18.3k31237
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3023492%2fsum-n-1-infty-frac-1n-pin12n-2n-1-with-complex-analysis%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
3
$begingroup$
Just write the power series for $sin(z)$ and choose $z$ to make it match with your series, up to a constant coefficient. Easier than you might think. Note that $(-1)^npi^n/2^n$ can be written $a^n$.
$endgroup$
– Jean-Claude Arbaut
Dec 3 '18 at 1:47
$begingroup$
Thank you @Jean-ClaudeArbaut. That was a great observation. Do you realize a similar observation with $sum_{n=1}^infty frac{n pi^n}{(2e)^n}$?
$endgroup$
– Darkdub
Dec 3 '18 at 11:38
2
$begingroup$
Differentiate $sum_{n=1}^infty x^n$ and note that $pi/(2e)<1$.
$endgroup$
– Jean-Claude Arbaut
Dec 3 '18 at 11:38