Inequality involving number of binary Lyndon words of length $n$ and $n+1$
$begingroup$
Let $f(n)$ be the number of binary Lyndon words of length $n$. This sequence is given by OEIS entry A001037. Is it true that $2f(n) ge f(n+1)$ for all positive $n$?
I have found a general formula to calculate $f(n)$:
$$
f(n) = frac{1}{n} sum_{d mid n} mu(n/d) 2^d.
$$
Symmetry also allows us to rewrite it another way:
$$
f(n) = frac{1}{n} sum_{d mid n} mu(d) 2^{n/d}.
$$
Here $mu(x)$ is the Möbius function, and $n$ is a positive integer (the case $n=0$ can be handled separately). It is possible to substitute these identities into the inequality above and perform some simplifications, but it does not seem to go anywhere. Any help is appreciated.
EDIT: My original formula was incorrect, I forgot the factor of $1/n$ in front of the summation.
sequences-and-series combinatorics necklace-and-bracelets
$endgroup$
add a comment |
$begingroup$
Let $f(n)$ be the number of binary Lyndon words of length $n$. This sequence is given by OEIS entry A001037. Is it true that $2f(n) ge f(n+1)$ for all positive $n$?
I have found a general formula to calculate $f(n)$:
$$
f(n) = frac{1}{n} sum_{d mid n} mu(n/d) 2^d.
$$
Symmetry also allows us to rewrite it another way:
$$
f(n) = frac{1}{n} sum_{d mid n} mu(d) 2^{n/d}.
$$
Here $mu(x)$ is the Möbius function, and $n$ is a positive integer (the case $n=0$ can be handled separately). It is possible to substitute these identities into the inequality above and perform some simplifications, but it does not seem to go anywhere. Any help is appreciated.
EDIT: My original formula was incorrect, I forgot the factor of $1/n$ in front of the summation.
sequences-and-series combinatorics necklace-and-bracelets
$endgroup$
add a comment |
$begingroup$
Let $f(n)$ be the number of binary Lyndon words of length $n$. This sequence is given by OEIS entry A001037. Is it true that $2f(n) ge f(n+1)$ for all positive $n$?
I have found a general formula to calculate $f(n)$:
$$
f(n) = frac{1}{n} sum_{d mid n} mu(n/d) 2^d.
$$
Symmetry also allows us to rewrite it another way:
$$
f(n) = frac{1}{n} sum_{d mid n} mu(d) 2^{n/d}.
$$
Here $mu(x)$ is the Möbius function, and $n$ is a positive integer (the case $n=0$ can be handled separately). It is possible to substitute these identities into the inequality above and perform some simplifications, but it does not seem to go anywhere. Any help is appreciated.
EDIT: My original formula was incorrect, I forgot the factor of $1/n$ in front of the summation.
sequences-and-series combinatorics necklace-and-bracelets
$endgroup$
Let $f(n)$ be the number of binary Lyndon words of length $n$. This sequence is given by OEIS entry A001037. Is it true that $2f(n) ge f(n+1)$ for all positive $n$?
I have found a general formula to calculate $f(n)$:
$$
f(n) = frac{1}{n} sum_{d mid n} mu(n/d) 2^d.
$$
Symmetry also allows us to rewrite it another way:
$$
f(n) = frac{1}{n} sum_{d mid n} mu(d) 2^{n/d}.
$$
Here $mu(x)$ is the Möbius function, and $n$ is a positive integer (the case $n=0$ can be handled separately). It is possible to substitute these identities into the inequality above and perform some simplifications, but it does not seem to go anywhere. Any help is appreciated.
EDIT: My original formula was incorrect, I forgot the factor of $1/n$ in front of the summation.
sequences-and-series combinatorics necklace-and-bracelets
sequences-and-series combinatorics necklace-and-bracelets
edited Dec 4 '18 at 3:09
Saad
19.7k92352
19.7k92352
asked Jul 10 '15 at 3:46
RyanRyan
596628
596628
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
$$f(n)=frac{1}{n} sum_{d | n} mu(d) 2^{n/d} le frac{ 2^n + d(n)cdot 2^{n/2} }n = frac{ 2^n + O(sqrt{n}cdot 2^{n/2}) }n,$$
where $d(n)=O(sqrt n)$ denotes the umber of divisors of $n$.
We have $$2f(n)!!-!!f(n+1)!ge! frac{ 2^{n+1} + O(sqrt{n}cdot 2^{n/2}) }n !-!frac{ 2^{n+1} + O(sqrt{n+1}cdot 2^{(n+1)/2}) }{n+1}!ge! frac{ 2^{n+1}}{n(n+1)}! - ! O(2^{n/2}),$$
which tends to infinity, thus it is enough to check the first few terms, which can be done in OEIS (though I cheated a bit, because I didn't look up the constant in the $O$ notation, but it's definitely not that big).
$endgroup$
$begingroup$
Where does that first identity come from? The limiting behavior makes sense to me but I'm not sure how to derive it.
$endgroup$
– Ryan
Dec 3 '18 at 18:17
$begingroup$
@Ryan I've added $d(n)$, I hope that explains all.
$endgroup$
– domotorp
Dec 3 '18 at 20:23
add a comment |
$begingroup$
Step 1: For $n in mathbb{N}_+$,$$
frac{2^n}{n} - frac{2^{frac{n}{2}}}{2} leqslant f(n) leqslant frac{2^n}{n} + frac{2^{frac{n}{6}}}{6}. tag{1}
$$
Proof: For the upper bound,$$
n f(n) = sum_{d mid n} μleft( frac{n}{d} right) 2^d leqslant 2^n + sum_{substack{d mid n, d < n\μ(n / d) = 1}} 2^d. tag{2}
$$
If $d mid n$, $d < n$ and $μleft( dfrac{n}{d} right) = 1$, then $dfrac{n}{d}$ has at least two distinct prime divisors, which implies $dfrac{n}{d} geqslant 6$, i.e. $d leqslant dfrac{n}{6}$. Thus $(2) leqslant 2^n + dfrac{n}{6} 2^{frac{n}{6}} Rightarrow f(n) leqslant dfrac{2^n}{n} + dfrac{2^{frac{n}{6}}}{6}$.
For the lower bound,$$
n f(n) = sum_{d mid n} μleft( frac{n}{d} right) 2^d geqslant 2^n - sum_{substack{d mid n, d < n\μ(n / d) = -1}} 2^d. tag{3}
$$
If $d mid n$, $d < n$ and $μleft( dfrac{n}{d} right) = -1$, then $dfrac{n}{d}$ has at least one prime divisor, which implies $dfrac{n}{d} geqslant 2$, i.e. $d leqslant dfrac{n}{2}$. Thus $(3) geqslant 2^n - dfrac{n}{2} 2^{frac{n}{2}} Rightarrow f(n) geqslant dfrac{2^n}{n} - dfrac{2^{frac{n}{2}}}{2}$. Therefore, (1) holds.
Step 2: $2f(n) geqslant f(n + 1)$ holds for $n geqslant 15$.
Proof: By (1. 1), it suffices to prove that $2 left( dfrac{2^n}{n} - dfrac{2^{frac{n}{2}}}{2} right) geqslant dfrac{2^{n + 1}}{n + 1} + dfrac{2^{frac{n + 1}{6}}}{6}$. Because$$
2 left( frac{2^n}{n} - frac{2^{frac{n}{2}}}{2} right) geqslant frac{2^{n + 1}}{n + 1} + frac{2^{frac{n + 1}{6}}}{6} Longleftrightarrow frac{2^{n + 1}}{n(n + 1)} geqslant 2^{frac{n}{2}} + frac{2^{frac{n + 1}{6}}}{6},
$$
and $2^{frac{n + 1}{4}} geqslant n + 1$ for $n geqslant 15$, then$$
frac{2^{n + 1}}{n(n + 1)} geqslant 2^{frac{n + 1}{2}} = 2^{frac{n}{2}} + (sqrt{2} - 1) 2^{frac{n}{2}} geqslant 2^{frac{n}{2}} + frac{2^{frac{n}{2}}}{6} geqslant 2^{frac{n}{2}} + frac{2^{frac{n + 1}{6}}}{6}.
$$
Therefore, $2f(n) geqslant f(n + 1)$ holds for $n geqslant 15$.
Step 3: $2f(n) geqslant f(n + 1)$ holds for $0 leqslant n leqslant 14$.
Proof: Looking up in A001037 verifies this.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1355973%2finequality-involving-number-of-binary-lyndon-words-of-length-n-and-n1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$f(n)=frac{1}{n} sum_{d | n} mu(d) 2^{n/d} le frac{ 2^n + d(n)cdot 2^{n/2} }n = frac{ 2^n + O(sqrt{n}cdot 2^{n/2}) }n,$$
where $d(n)=O(sqrt n)$ denotes the umber of divisors of $n$.
We have $$2f(n)!!-!!f(n+1)!ge! frac{ 2^{n+1} + O(sqrt{n}cdot 2^{n/2}) }n !-!frac{ 2^{n+1} + O(sqrt{n+1}cdot 2^{(n+1)/2}) }{n+1}!ge! frac{ 2^{n+1}}{n(n+1)}! - ! O(2^{n/2}),$$
which tends to infinity, thus it is enough to check the first few terms, which can be done in OEIS (though I cheated a bit, because I didn't look up the constant in the $O$ notation, but it's definitely not that big).
$endgroup$
$begingroup$
Where does that first identity come from? The limiting behavior makes sense to me but I'm not sure how to derive it.
$endgroup$
– Ryan
Dec 3 '18 at 18:17
$begingroup$
@Ryan I've added $d(n)$, I hope that explains all.
$endgroup$
– domotorp
Dec 3 '18 at 20:23
add a comment |
$begingroup$
$$f(n)=frac{1}{n} sum_{d | n} mu(d) 2^{n/d} le frac{ 2^n + d(n)cdot 2^{n/2} }n = frac{ 2^n + O(sqrt{n}cdot 2^{n/2}) }n,$$
where $d(n)=O(sqrt n)$ denotes the umber of divisors of $n$.
We have $$2f(n)!!-!!f(n+1)!ge! frac{ 2^{n+1} + O(sqrt{n}cdot 2^{n/2}) }n !-!frac{ 2^{n+1} + O(sqrt{n+1}cdot 2^{(n+1)/2}) }{n+1}!ge! frac{ 2^{n+1}}{n(n+1)}! - ! O(2^{n/2}),$$
which tends to infinity, thus it is enough to check the first few terms, which can be done in OEIS (though I cheated a bit, because I didn't look up the constant in the $O$ notation, but it's definitely not that big).
$endgroup$
$begingroup$
Where does that first identity come from? The limiting behavior makes sense to me but I'm not sure how to derive it.
$endgroup$
– Ryan
Dec 3 '18 at 18:17
$begingroup$
@Ryan I've added $d(n)$, I hope that explains all.
$endgroup$
– domotorp
Dec 3 '18 at 20:23
add a comment |
$begingroup$
$$f(n)=frac{1}{n} sum_{d | n} mu(d) 2^{n/d} le frac{ 2^n + d(n)cdot 2^{n/2} }n = frac{ 2^n + O(sqrt{n}cdot 2^{n/2}) }n,$$
where $d(n)=O(sqrt n)$ denotes the umber of divisors of $n$.
We have $$2f(n)!!-!!f(n+1)!ge! frac{ 2^{n+1} + O(sqrt{n}cdot 2^{n/2}) }n !-!frac{ 2^{n+1} + O(sqrt{n+1}cdot 2^{(n+1)/2}) }{n+1}!ge! frac{ 2^{n+1}}{n(n+1)}! - ! O(2^{n/2}),$$
which tends to infinity, thus it is enough to check the first few terms, which can be done in OEIS (though I cheated a bit, because I didn't look up the constant in the $O$ notation, but it's definitely not that big).
$endgroup$
$$f(n)=frac{1}{n} sum_{d | n} mu(d) 2^{n/d} le frac{ 2^n + d(n)cdot 2^{n/2} }n = frac{ 2^n + O(sqrt{n}cdot 2^{n/2}) }n,$$
where $d(n)=O(sqrt n)$ denotes the umber of divisors of $n$.
We have $$2f(n)!!-!!f(n+1)!ge! frac{ 2^{n+1} + O(sqrt{n}cdot 2^{n/2}) }n !-!frac{ 2^{n+1} + O(sqrt{n+1}cdot 2^{(n+1)/2}) }{n+1}!ge! frac{ 2^{n+1}}{n(n+1)}! - ! O(2^{n/2}),$$
which tends to infinity, thus it is enough to check the first few terms, which can be done in OEIS (though I cheated a bit, because I didn't look up the constant in the $O$ notation, but it's definitely not that big).
edited Dec 3 '18 at 20:23
answered Dec 3 '18 at 12:16
domotorpdomotorp
910515
910515
$begingroup$
Where does that first identity come from? The limiting behavior makes sense to me but I'm not sure how to derive it.
$endgroup$
– Ryan
Dec 3 '18 at 18:17
$begingroup$
@Ryan I've added $d(n)$, I hope that explains all.
$endgroup$
– domotorp
Dec 3 '18 at 20:23
add a comment |
$begingroup$
Where does that first identity come from? The limiting behavior makes sense to me but I'm not sure how to derive it.
$endgroup$
– Ryan
Dec 3 '18 at 18:17
$begingroup$
@Ryan I've added $d(n)$, I hope that explains all.
$endgroup$
– domotorp
Dec 3 '18 at 20:23
$begingroup$
Where does that first identity come from? The limiting behavior makes sense to me but I'm not sure how to derive it.
$endgroup$
– Ryan
Dec 3 '18 at 18:17
$begingroup$
Where does that first identity come from? The limiting behavior makes sense to me but I'm not sure how to derive it.
$endgroup$
– Ryan
Dec 3 '18 at 18:17
$begingroup$
@Ryan I've added $d(n)$, I hope that explains all.
$endgroup$
– domotorp
Dec 3 '18 at 20:23
$begingroup$
@Ryan I've added $d(n)$, I hope that explains all.
$endgroup$
– domotorp
Dec 3 '18 at 20:23
add a comment |
$begingroup$
Step 1: For $n in mathbb{N}_+$,$$
frac{2^n}{n} - frac{2^{frac{n}{2}}}{2} leqslant f(n) leqslant frac{2^n}{n} + frac{2^{frac{n}{6}}}{6}. tag{1}
$$
Proof: For the upper bound,$$
n f(n) = sum_{d mid n} μleft( frac{n}{d} right) 2^d leqslant 2^n + sum_{substack{d mid n, d < n\μ(n / d) = 1}} 2^d. tag{2}
$$
If $d mid n$, $d < n$ and $μleft( dfrac{n}{d} right) = 1$, then $dfrac{n}{d}$ has at least two distinct prime divisors, which implies $dfrac{n}{d} geqslant 6$, i.e. $d leqslant dfrac{n}{6}$. Thus $(2) leqslant 2^n + dfrac{n}{6} 2^{frac{n}{6}} Rightarrow f(n) leqslant dfrac{2^n}{n} + dfrac{2^{frac{n}{6}}}{6}$.
For the lower bound,$$
n f(n) = sum_{d mid n} μleft( frac{n}{d} right) 2^d geqslant 2^n - sum_{substack{d mid n, d < n\μ(n / d) = -1}} 2^d. tag{3}
$$
If $d mid n$, $d < n$ and $μleft( dfrac{n}{d} right) = -1$, then $dfrac{n}{d}$ has at least one prime divisor, which implies $dfrac{n}{d} geqslant 2$, i.e. $d leqslant dfrac{n}{2}$. Thus $(3) geqslant 2^n - dfrac{n}{2} 2^{frac{n}{2}} Rightarrow f(n) geqslant dfrac{2^n}{n} - dfrac{2^{frac{n}{2}}}{2}$. Therefore, (1) holds.
Step 2: $2f(n) geqslant f(n + 1)$ holds for $n geqslant 15$.
Proof: By (1. 1), it suffices to prove that $2 left( dfrac{2^n}{n} - dfrac{2^{frac{n}{2}}}{2} right) geqslant dfrac{2^{n + 1}}{n + 1} + dfrac{2^{frac{n + 1}{6}}}{6}$. Because$$
2 left( frac{2^n}{n} - frac{2^{frac{n}{2}}}{2} right) geqslant frac{2^{n + 1}}{n + 1} + frac{2^{frac{n + 1}{6}}}{6} Longleftrightarrow frac{2^{n + 1}}{n(n + 1)} geqslant 2^{frac{n}{2}} + frac{2^{frac{n + 1}{6}}}{6},
$$
and $2^{frac{n + 1}{4}} geqslant n + 1$ for $n geqslant 15$, then$$
frac{2^{n + 1}}{n(n + 1)} geqslant 2^{frac{n + 1}{2}} = 2^{frac{n}{2}} + (sqrt{2} - 1) 2^{frac{n}{2}} geqslant 2^{frac{n}{2}} + frac{2^{frac{n}{2}}}{6} geqslant 2^{frac{n}{2}} + frac{2^{frac{n + 1}{6}}}{6}.
$$
Therefore, $2f(n) geqslant f(n + 1)$ holds for $n geqslant 15$.
Step 3: $2f(n) geqslant f(n + 1)$ holds for $0 leqslant n leqslant 14$.
Proof: Looking up in A001037 verifies this.
$endgroup$
add a comment |
$begingroup$
Step 1: For $n in mathbb{N}_+$,$$
frac{2^n}{n} - frac{2^{frac{n}{2}}}{2} leqslant f(n) leqslant frac{2^n}{n} + frac{2^{frac{n}{6}}}{6}. tag{1}
$$
Proof: For the upper bound,$$
n f(n) = sum_{d mid n} μleft( frac{n}{d} right) 2^d leqslant 2^n + sum_{substack{d mid n, d < n\μ(n / d) = 1}} 2^d. tag{2}
$$
If $d mid n$, $d < n$ and $μleft( dfrac{n}{d} right) = 1$, then $dfrac{n}{d}$ has at least two distinct prime divisors, which implies $dfrac{n}{d} geqslant 6$, i.e. $d leqslant dfrac{n}{6}$. Thus $(2) leqslant 2^n + dfrac{n}{6} 2^{frac{n}{6}} Rightarrow f(n) leqslant dfrac{2^n}{n} + dfrac{2^{frac{n}{6}}}{6}$.
For the lower bound,$$
n f(n) = sum_{d mid n} μleft( frac{n}{d} right) 2^d geqslant 2^n - sum_{substack{d mid n, d < n\μ(n / d) = -1}} 2^d. tag{3}
$$
If $d mid n$, $d < n$ and $μleft( dfrac{n}{d} right) = -1$, then $dfrac{n}{d}$ has at least one prime divisor, which implies $dfrac{n}{d} geqslant 2$, i.e. $d leqslant dfrac{n}{2}$. Thus $(3) geqslant 2^n - dfrac{n}{2} 2^{frac{n}{2}} Rightarrow f(n) geqslant dfrac{2^n}{n} - dfrac{2^{frac{n}{2}}}{2}$. Therefore, (1) holds.
Step 2: $2f(n) geqslant f(n + 1)$ holds for $n geqslant 15$.
Proof: By (1. 1), it suffices to prove that $2 left( dfrac{2^n}{n} - dfrac{2^{frac{n}{2}}}{2} right) geqslant dfrac{2^{n + 1}}{n + 1} + dfrac{2^{frac{n + 1}{6}}}{6}$. Because$$
2 left( frac{2^n}{n} - frac{2^{frac{n}{2}}}{2} right) geqslant frac{2^{n + 1}}{n + 1} + frac{2^{frac{n + 1}{6}}}{6} Longleftrightarrow frac{2^{n + 1}}{n(n + 1)} geqslant 2^{frac{n}{2}} + frac{2^{frac{n + 1}{6}}}{6},
$$
and $2^{frac{n + 1}{4}} geqslant n + 1$ for $n geqslant 15$, then$$
frac{2^{n + 1}}{n(n + 1)} geqslant 2^{frac{n + 1}{2}} = 2^{frac{n}{2}} + (sqrt{2} - 1) 2^{frac{n}{2}} geqslant 2^{frac{n}{2}} + frac{2^{frac{n}{2}}}{6} geqslant 2^{frac{n}{2}} + frac{2^{frac{n + 1}{6}}}{6}.
$$
Therefore, $2f(n) geqslant f(n + 1)$ holds for $n geqslant 15$.
Step 3: $2f(n) geqslant f(n + 1)$ holds for $0 leqslant n leqslant 14$.
Proof: Looking up in A001037 verifies this.
$endgroup$
add a comment |
$begingroup$
Step 1: For $n in mathbb{N}_+$,$$
frac{2^n}{n} - frac{2^{frac{n}{2}}}{2} leqslant f(n) leqslant frac{2^n}{n} + frac{2^{frac{n}{6}}}{6}. tag{1}
$$
Proof: For the upper bound,$$
n f(n) = sum_{d mid n} μleft( frac{n}{d} right) 2^d leqslant 2^n + sum_{substack{d mid n, d < n\μ(n / d) = 1}} 2^d. tag{2}
$$
If $d mid n$, $d < n$ and $μleft( dfrac{n}{d} right) = 1$, then $dfrac{n}{d}$ has at least two distinct prime divisors, which implies $dfrac{n}{d} geqslant 6$, i.e. $d leqslant dfrac{n}{6}$. Thus $(2) leqslant 2^n + dfrac{n}{6} 2^{frac{n}{6}} Rightarrow f(n) leqslant dfrac{2^n}{n} + dfrac{2^{frac{n}{6}}}{6}$.
For the lower bound,$$
n f(n) = sum_{d mid n} μleft( frac{n}{d} right) 2^d geqslant 2^n - sum_{substack{d mid n, d < n\μ(n / d) = -1}} 2^d. tag{3}
$$
If $d mid n$, $d < n$ and $μleft( dfrac{n}{d} right) = -1$, then $dfrac{n}{d}$ has at least one prime divisor, which implies $dfrac{n}{d} geqslant 2$, i.e. $d leqslant dfrac{n}{2}$. Thus $(3) geqslant 2^n - dfrac{n}{2} 2^{frac{n}{2}} Rightarrow f(n) geqslant dfrac{2^n}{n} - dfrac{2^{frac{n}{2}}}{2}$. Therefore, (1) holds.
Step 2: $2f(n) geqslant f(n + 1)$ holds for $n geqslant 15$.
Proof: By (1. 1), it suffices to prove that $2 left( dfrac{2^n}{n} - dfrac{2^{frac{n}{2}}}{2} right) geqslant dfrac{2^{n + 1}}{n + 1} + dfrac{2^{frac{n + 1}{6}}}{6}$. Because$$
2 left( frac{2^n}{n} - frac{2^{frac{n}{2}}}{2} right) geqslant frac{2^{n + 1}}{n + 1} + frac{2^{frac{n + 1}{6}}}{6} Longleftrightarrow frac{2^{n + 1}}{n(n + 1)} geqslant 2^{frac{n}{2}} + frac{2^{frac{n + 1}{6}}}{6},
$$
and $2^{frac{n + 1}{4}} geqslant n + 1$ for $n geqslant 15$, then$$
frac{2^{n + 1}}{n(n + 1)} geqslant 2^{frac{n + 1}{2}} = 2^{frac{n}{2}} + (sqrt{2} - 1) 2^{frac{n}{2}} geqslant 2^{frac{n}{2}} + frac{2^{frac{n}{2}}}{6} geqslant 2^{frac{n}{2}} + frac{2^{frac{n + 1}{6}}}{6}.
$$
Therefore, $2f(n) geqslant f(n + 1)$ holds for $n geqslant 15$.
Step 3: $2f(n) geqslant f(n + 1)$ holds for $0 leqslant n leqslant 14$.
Proof: Looking up in A001037 verifies this.
$endgroup$
Step 1: For $n in mathbb{N}_+$,$$
frac{2^n}{n} - frac{2^{frac{n}{2}}}{2} leqslant f(n) leqslant frac{2^n}{n} + frac{2^{frac{n}{6}}}{6}. tag{1}
$$
Proof: For the upper bound,$$
n f(n) = sum_{d mid n} μleft( frac{n}{d} right) 2^d leqslant 2^n + sum_{substack{d mid n, d < n\μ(n / d) = 1}} 2^d. tag{2}
$$
If $d mid n$, $d < n$ and $μleft( dfrac{n}{d} right) = 1$, then $dfrac{n}{d}$ has at least two distinct prime divisors, which implies $dfrac{n}{d} geqslant 6$, i.e. $d leqslant dfrac{n}{6}$. Thus $(2) leqslant 2^n + dfrac{n}{6} 2^{frac{n}{6}} Rightarrow f(n) leqslant dfrac{2^n}{n} + dfrac{2^{frac{n}{6}}}{6}$.
For the lower bound,$$
n f(n) = sum_{d mid n} μleft( frac{n}{d} right) 2^d geqslant 2^n - sum_{substack{d mid n, d < n\μ(n / d) = -1}} 2^d. tag{3}
$$
If $d mid n$, $d < n$ and $μleft( dfrac{n}{d} right) = -1$, then $dfrac{n}{d}$ has at least one prime divisor, which implies $dfrac{n}{d} geqslant 2$, i.e. $d leqslant dfrac{n}{2}$. Thus $(3) geqslant 2^n - dfrac{n}{2} 2^{frac{n}{2}} Rightarrow f(n) geqslant dfrac{2^n}{n} - dfrac{2^{frac{n}{2}}}{2}$. Therefore, (1) holds.
Step 2: $2f(n) geqslant f(n + 1)$ holds for $n geqslant 15$.
Proof: By (1. 1), it suffices to prove that $2 left( dfrac{2^n}{n} - dfrac{2^{frac{n}{2}}}{2} right) geqslant dfrac{2^{n + 1}}{n + 1} + dfrac{2^{frac{n + 1}{6}}}{6}$. Because$$
2 left( frac{2^n}{n} - frac{2^{frac{n}{2}}}{2} right) geqslant frac{2^{n + 1}}{n + 1} + frac{2^{frac{n + 1}{6}}}{6} Longleftrightarrow frac{2^{n + 1}}{n(n + 1)} geqslant 2^{frac{n}{2}} + frac{2^{frac{n + 1}{6}}}{6},
$$
and $2^{frac{n + 1}{4}} geqslant n + 1$ for $n geqslant 15$, then$$
frac{2^{n + 1}}{n(n + 1)} geqslant 2^{frac{n + 1}{2}} = 2^{frac{n}{2}} + (sqrt{2} - 1) 2^{frac{n}{2}} geqslant 2^{frac{n}{2}} + frac{2^{frac{n}{2}}}{6} geqslant 2^{frac{n}{2}} + frac{2^{frac{n + 1}{6}}}{6}.
$$
Therefore, $2f(n) geqslant f(n + 1)$ holds for $n geqslant 15$.
Step 3: $2f(n) geqslant f(n + 1)$ holds for $0 leqslant n leqslant 14$.
Proof: Looking up in A001037 verifies this.
answered Dec 4 '18 at 3:06
SaadSaad
19.7k92352
19.7k92352
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1355973%2finequality-involving-number-of-binary-lyndon-words-of-length-n-and-n1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown