Solution to infinite product $prod_{p-primes}^{infty} frac{p}{p-1}$
I want to find the $prod_{p-primes}^{infty} frac{p}{p-1}$. This question stems from a question from amc 12a 2018. It goes as follows: Let $A$ be the set of positive integers that have no prime factors other than $2$, $3$, or $5$. The infinite sum
$$frac{1}{1} + frac{1}{2} + frac{1}{3} + frac{1}{4} + frac{1}{5} + frac{1}{6} + frac{1}{8} + frac{1}{9} + frac{1}{10} + frac{1}{12} + frac{1}{15} + frac{1}{16} + frac{1}{18} + frac{1}{20} + cdots$$
of the reciprocals of the elements of $A$ can be expressed as $frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. What is $m+n$? Through some working out you can work out that the solution to this question is $sum_0^infty frac{1}{2^n}$$sum_0^infty frac{1}{3^n}$$sum_0^infty frac{1}{5^n}$, simple power series multiplication. But I started to wonder what the sum would be if $A$ was the set of positive integers that have no prime factors other than all primes. I think that the product will converge since $sum_1^infty log(a_n)$ seems to converge, but hey I could be wrong.
sequences-and-series infinite-product
add a comment |
I want to find the $prod_{p-primes}^{infty} frac{p}{p-1}$. This question stems from a question from amc 12a 2018. It goes as follows: Let $A$ be the set of positive integers that have no prime factors other than $2$, $3$, or $5$. The infinite sum
$$frac{1}{1} + frac{1}{2} + frac{1}{3} + frac{1}{4} + frac{1}{5} + frac{1}{6} + frac{1}{8} + frac{1}{9} + frac{1}{10} + frac{1}{12} + frac{1}{15} + frac{1}{16} + frac{1}{18} + frac{1}{20} + cdots$$
of the reciprocals of the elements of $A$ can be expressed as $frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. What is $m+n$? Through some working out you can work out that the solution to this question is $sum_0^infty frac{1}{2^n}$$sum_0^infty frac{1}{3^n}$$sum_0^infty frac{1}{5^n}$, simple power series multiplication. But I started to wonder what the sum would be if $A$ was the set of positive integers that have no prime factors other than all primes. I think that the product will converge since $sum_1^infty log(a_n)$ seems to converge, but hey I could be wrong.
sequences-and-series infinite-product
1
en.wikipedia.org/wiki/Euler_product
– R. Burton
Nov 24 at 15:19
add a comment |
I want to find the $prod_{p-primes}^{infty} frac{p}{p-1}$. This question stems from a question from amc 12a 2018. It goes as follows: Let $A$ be the set of positive integers that have no prime factors other than $2$, $3$, or $5$. The infinite sum
$$frac{1}{1} + frac{1}{2} + frac{1}{3} + frac{1}{4} + frac{1}{5} + frac{1}{6} + frac{1}{8} + frac{1}{9} + frac{1}{10} + frac{1}{12} + frac{1}{15} + frac{1}{16} + frac{1}{18} + frac{1}{20} + cdots$$
of the reciprocals of the elements of $A$ can be expressed as $frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. What is $m+n$? Through some working out you can work out that the solution to this question is $sum_0^infty frac{1}{2^n}$$sum_0^infty frac{1}{3^n}$$sum_0^infty frac{1}{5^n}$, simple power series multiplication. But I started to wonder what the sum would be if $A$ was the set of positive integers that have no prime factors other than all primes. I think that the product will converge since $sum_1^infty log(a_n)$ seems to converge, but hey I could be wrong.
sequences-and-series infinite-product
I want to find the $prod_{p-primes}^{infty} frac{p}{p-1}$. This question stems from a question from amc 12a 2018. It goes as follows: Let $A$ be the set of positive integers that have no prime factors other than $2$, $3$, or $5$. The infinite sum
$$frac{1}{1} + frac{1}{2} + frac{1}{3} + frac{1}{4} + frac{1}{5} + frac{1}{6} + frac{1}{8} + frac{1}{9} + frac{1}{10} + frac{1}{12} + frac{1}{15} + frac{1}{16} + frac{1}{18} + frac{1}{20} + cdots$$
of the reciprocals of the elements of $A$ can be expressed as $frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. What is $m+n$? Through some working out you can work out that the solution to this question is $sum_0^infty frac{1}{2^n}$$sum_0^infty frac{1}{3^n}$$sum_0^infty frac{1}{5^n}$, simple power series multiplication. But I started to wonder what the sum would be if $A$ was the set of positive integers that have no prime factors other than all primes. I think that the product will converge since $sum_1^infty log(a_n)$ seems to converge, but hey I could be wrong.
sequences-and-series infinite-product
sequences-and-series infinite-product
asked Nov 24 at 15:07
Suchetan Dontha
11510
11510
1
en.wikipedia.org/wiki/Euler_product
– R. Burton
Nov 24 at 15:19
add a comment |
1
en.wikipedia.org/wiki/Euler_product
– R. Burton
Nov 24 at 15:19
1
1
en.wikipedia.org/wiki/Euler_product
– R. Burton
Nov 24 at 15:19
en.wikipedia.org/wiki/Euler_product
– R. Burton
Nov 24 at 15:19
add a comment |
3 Answers
3
active
oldest
votes
You write "But I started to wonder what the sum would be if A
was the set of positive integers that have no prime factors other than all primes". Since any natural number can be written as a product of primes (unique up to reordering the factors) your set A will in this case be all natural numbers. So in this case your product can (in a formal sense) be rewritten as
$$ prod_{primes}frac{p}{p-1} = prod_{primes}frac{1}{1-1/p} = prod_{primes}sum_{i=0}^{infty} frac{1}{p^i} = sum_{n=1}^{infty} frac{1}{n} $$
To make sense of this formal manipulation, you could look at the function
$$ zeta(s) = sum_{n=1}^{infty} frac{1}{n^s} = prod_{primes}frac{p^s}{p^s-1} , (s>1)$$
which is known as the Riemann zeta function - and arguably the most famous function in all of mathematics. Your product would then correspond to the value of the Riemann zeta function as 1. As mentioned above the Riemann zeta-function has a pole at one (i.e. it is infinite), but one can could try to look at the asymptotic expansion of the sum
$$ sum_{n=1}^{N} frac{1}{n}$$
as $N$ goes to infinity. In this case something interesting does happen, namely
$$ lim_{N} (sum_{n=1}^{N}frac{1}{n} - ln(N)) = gamma$$
where $gamma$ is the Euler-Mascheroni constant. Now in your case one could argue that one should look not at the asymptotic expansion of $ sum_{n=1}^{N} frac{1}{n}$, but rather at the asymptotic expansion of
$$ prod_{p prime}^{p < N}frac{p}{p-1}$$
but I would expect the answer to be the same. In short - even though the product diverges doesn't mean something cool won't happen along the way.
Thank you for your response. I can't believe that I didn't recognize the product as the prime interpretation of the zeta function, thank you for pointing that out. Looking back now its pretty obvious that what I was asking for was the harmonic series. But I will look into the Euler-Mascheroni constant. I've seen it before and wondered how to get it.
– Suchetan Dontha
Nov 24 at 16:23
add a comment |
${pover p-1}=1+{1over p-1}>1+frac1p$ and the sum of the reciprocals of the primes diverges, so the given product also diverges.
Thanks for your answer. I was hoping something cool would happen but I guess not.
– Suchetan Dontha
Nov 24 at 15:27
add a comment |
An alternative approach: $frac{p}{p-1}geq 1+frac{1}{p}$ gives
$$ prod_{p}frac{p}{p-1}geq prod_{p}left(1+frac{1}{p}right) =!!!!!!!! sum_{substack{ngeq 1\ntext{ squarefree}}}!!!!!!!frac{1}{n} $$
but since the set of squarefree numbers has a positive density in $mathbb{N}$ ($frac{6}{pi^2}$, which is also the probability that two "random integers" are coprime), by summation by parts it follows that
$$sum_{substack{1leq nleq N\ntext{ squarefree}}}!!!!frac{1}{n}=O(1)+frac{6}{pi^2}sum_{n=1}^{N}frac{1}{n}=frac{6}{pi^2}log(N)+O(1) $$
so the original product is divergent.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3011661%2fsolution-to-infinite-product-prod-p-primes-infty-fracpp-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
You write "But I started to wonder what the sum would be if A
was the set of positive integers that have no prime factors other than all primes". Since any natural number can be written as a product of primes (unique up to reordering the factors) your set A will in this case be all natural numbers. So in this case your product can (in a formal sense) be rewritten as
$$ prod_{primes}frac{p}{p-1} = prod_{primes}frac{1}{1-1/p} = prod_{primes}sum_{i=0}^{infty} frac{1}{p^i} = sum_{n=1}^{infty} frac{1}{n} $$
To make sense of this formal manipulation, you could look at the function
$$ zeta(s) = sum_{n=1}^{infty} frac{1}{n^s} = prod_{primes}frac{p^s}{p^s-1} , (s>1)$$
which is known as the Riemann zeta function - and arguably the most famous function in all of mathematics. Your product would then correspond to the value of the Riemann zeta function as 1. As mentioned above the Riemann zeta-function has a pole at one (i.e. it is infinite), but one can could try to look at the asymptotic expansion of the sum
$$ sum_{n=1}^{N} frac{1}{n}$$
as $N$ goes to infinity. In this case something interesting does happen, namely
$$ lim_{N} (sum_{n=1}^{N}frac{1}{n} - ln(N)) = gamma$$
where $gamma$ is the Euler-Mascheroni constant. Now in your case one could argue that one should look not at the asymptotic expansion of $ sum_{n=1}^{N} frac{1}{n}$, but rather at the asymptotic expansion of
$$ prod_{p prime}^{p < N}frac{p}{p-1}$$
but I would expect the answer to be the same. In short - even though the product diverges doesn't mean something cool won't happen along the way.
Thank you for your response. I can't believe that I didn't recognize the product as the prime interpretation of the zeta function, thank you for pointing that out. Looking back now its pretty obvious that what I was asking for was the harmonic series. But I will look into the Euler-Mascheroni constant. I've seen it before and wondered how to get it.
– Suchetan Dontha
Nov 24 at 16:23
add a comment |
You write "But I started to wonder what the sum would be if A
was the set of positive integers that have no prime factors other than all primes". Since any natural number can be written as a product of primes (unique up to reordering the factors) your set A will in this case be all natural numbers. So in this case your product can (in a formal sense) be rewritten as
$$ prod_{primes}frac{p}{p-1} = prod_{primes}frac{1}{1-1/p} = prod_{primes}sum_{i=0}^{infty} frac{1}{p^i} = sum_{n=1}^{infty} frac{1}{n} $$
To make sense of this formal manipulation, you could look at the function
$$ zeta(s) = sum_{n=1}^{infty} frac{1}{n^s} = prod_{primes}frac{p^s}{p^s-1} , (s>1)$$
which is known as the Riemann zeta function - and arguably the most famous function in all of mathematics. Your product would then correspond to the value of the Riemann zeta function as 1. As mentioned above the Riemann zeta-function has a pole at one (i.e. it is infinite), but one can could try to look at the asymptotic expansion of the sum
$$ sum_{n=1}^{N} frac{1}{n}$$
as $N$ goes to infinity. In this case something interesting does happen, namely
$$ lim_{N} (sum_{n=1}^{N}frac{1}{n} - ln(N)) = gamma$$
where $gamma$ is the Euler-Mascheroni constant. Now in your case one could argue that one should look not at the asymptotic expansion of $ sum_{n=1}^{N} frac{1}{n}$, but rather at the asymptotic expansion of
$$ prod_{p prime}^{p < N}frac{p}{p-1}$$
but I would expect the answer to be the same. In short - even though the product diverges doesn't mean something cool won't happen along the way.
Thank you for your response. I can't believe that I didn't recognize the product as the prime interpretation of the zeta function, thank you for pointing that out. Looking back now its pretty obvious that what I was asking for was the harmonic series. But I will look into the Euler-Mascheroni constant. I've seen it before and wondered how to get it.
– Suchetan Dontha
Nov 24 at 16:23
add a comment |
You write "But I started to wonder what the sum would be if A
was the set of positive integers that have no prime factors other than all primes". Since any natural number can be written as a product of primes (unique up to reordering the factors) your set A will in this case be all natural numbers. So in this case your product can (in a formal sense) be rewritten as
$$ prod_{primes}frac{p}{p-1} = prod_{primes}frac{1}{1-1/p} = prod_{primes}sum_{i=0}^{infty} frac{1}{p^i} = sum_{n=1}^{infty} frac{1}{n} $$
To make sense of this formal manipulation, you could look at the function
$$ zeta(s) = sum_{n=1}^{infty} frac{1}{n^s} = prod_{primes}frac{p^s}{p^s-1} , (s>1)$$
which is known as the Riemann zeta function - and arguably the most famous function in all of mathematics. Your product would then correspond to the value of the Riemann zeta function as 1. As mentioned above the Riemann zeta-function has a pole at one (i.e. it is infinite), but one can could try to look at the asymptotic expansion of the sum
$$ sum_{n=1}^{N} frac{1}{n}$$
as $N$ goes to infinity. In this case something interesting does happen, namely
$$ lim_{N} (sum_{n=1}^{N}frac{1}{n} - ln(N)) = gamma$$
where $gamma$ is the Euler-Mascheroni constant. Now in your case one could argue that one should look not at the asymptotic expansion of $ sum_{n=1}^{N} frac{1}{n}$, but rather at the asymptotic expansion of
$$ prod_{p prime}^{p < N}frac{p}{p-1}$$
but I would expect the answer to be the same. In short - even though the product diverges doesn't mean something cool won't happen along the way.
You write "But I started to wonder what the sum would be if A
was the set of positive integers that have no prime factors other than all primes". Since any natural number can be written as a product of primes (unique up to reordering the factors) your set A will in this case be all natural numbers. So in this case your product can (in a formal sense) be rewritten as
$$ prod_{primes}frac{p}{p-1} = prod_{primes}frac{1}{1-1/p} = prod_{primes}sum_{i=0}^{infty} frac{1}{p^i} = sum_{n=1}^{infty} frac{1}{n} $$
To make sense of this formal manipulation, you could look at the function
$$ zeta(s) = sum_{n=1}^{infty} frac{1}{n^s} = prod_{primes}frac{p^s}{p^s-1} , (s>1)$$
which is known as the Riemann zeta function - and arguably the most famous function in all of mathematics. Your product would then correspond to the value of the Riemann zeta function as 1. As mentioned above the Riemann zeta-function has a pole at one (i.e. it is infinite), but one can could try to look at the asymptotic expansion of the sum
$$ sum_{n=1}^{N} frac{1}{n}$$
as $N$ goes to infinity. In this case something interesting does happen, namely
$$ lim_{N} (sum_{n=1}^{N}frac{1}{n} - ln(N)) = gamma$$
where $gamma$ is the Euler-Mascheroni constant. Now in your case one could argue that one should look not at the asymptotic expansion of $ sum_{n=1}^{N} frac{1}{n}$, but rather at the asymptotic expansion of
$$ prod_{p prime}^{p < N}frac{p}{p-1}$$
but I would expect the answer to be the same. In short - even though the product diverges doesn't mean something cool won't happen along the way.
answered Nov 24 at 16:12
Testcase
1362
1362
Thank you for your response. I can't believe that I didn't recognize the product as the prime interpretation of the zeta function, thank you for pointing that out. Looking back now its pretty obvious that what I was asking for was the harmonic series. But I will look into the Euler-Mascheroni constant. I've seen it before and wondered how to get it.
– Suchetan Dontha
Nov 24 at 16:23
add a comment |
Thank you for your response. I can't believe that I didn't recognize the product as the prime interpretation of the zeta function, thank you for pointing that out. Looking back now its pretty obvious that what I was asking for was the harmonic series. But I will look into the Euler-Mascheroni constant. I've seen it before and wondered how to get it.
– Suchetan Dontha
Nov 24 at 16:23
Thank you for your response. I can't believe that I didn't recognize the product as the prime interpretation of the zeta function, thank you for pointing that out. Looking back now its pretty obvious that what I was asking for was the harmonic series. But I will look into the Euler-Mascheroni constant. I've seen it before and wondered how to get it.
– Suchetan Dontha
Nov 24 at 16:23
Thank you for your response. I can't believe that I didn't recognize the product as the prime interpretation of the zeta function, thank you for pointing that out. Looking back now its pretty obvious that what I was asking for was the harmonic series. But I will look into the Euler-Mascheroni constant. I've seen it before and wondered how to get it.
– Suchetan Dontha
Nov 24 at 16:23
add a comment |
${pover p-1}=1+{1over p-1}>1+frac1p$ and the sum of the reciprocals of the primes diverges, so the given product also diverges.
Thanks for your answer. I was hoping something cool would happen but I guess not.
– Suchetan Dontha
Nov 24 at 15:27
add a comment |
${pover p-1}=1+{1over p-1}>1+frac1p$ and the sum of the reciprocals of the primes diverges, so the given product also diverges.
Thanks for your answer. I was hoping something cool would happen but I guess not.
– Suchetan Dontha
Nov 24 at 15:27
add a comment |
${pover p-1}=1+{1over p-1}>1+frac1p$ and the sum of the reciprocals of the primes diverges, so the given product also diverges.
${pover p-1}=1+{1over p-1}>1+frac1p$ and the sum of the reciprocals of the primes diverges, so the given product also diverges.
answered Nov 24 at 15:24
saulspatz
13.7k21328
13.7k21328
Thanks for your answer. I was hoping something cool would happen but I guess not.
– Suchetan Dontha
Nov 24 at 15:27
add a comment |
Thanks for your answer. I was hoping something cool would happen but I guess not.
– Suchetan Dontha
Nov 24 at 15:27
Thanks for your answer. I was hoping something cool would happen but I guess not.
– Suchetan Dontha
Nov 24 at 15:27
Thanks for your answer. I was hoping something cool would happen but I guess not.
– Suchetan Dontha
Nov 24 at 15:27
add a comment |
An alternative approach: $frac{p}{p-1}geq 1+frac{1}{p}$ gives
$$ prod_{p}frac{p}{p-1}geq prod_{p}left(1+frac{1}{p}right) =!!!!!!!! sum_{substack{ngeq 1\ntext{ squarefree}}}!!!!!!!frac{1}{n} $$
but since the set of squarefree numbers has a positive density in $mathbb{N}$ ($frac{6}{pi^2}$, which is also the probability that two "random integers" are coprime), by summation by parts it follows that
$$sum_{substack{1leq nleq N\ntext{ squarefree}}}!!!!frac{1}{n}=O(1)+frac{6}{pi^2}sum_{n=1}^{N}frac{1}{n}=frac{6}{pi^2}log(N)+O(1) $$
so the original product is divergent.
add a comment |
An alternative approach: $frac{p}{p-1}geq 1+frac{1}{p}$ gives
$$ prod_{p}frac{p}{p-1}geq prod_{p}left(1+frac{1}{p}right) =!!!!!!!! sum_{substack{ngeq 1\ntext{ squarefree}}}!!!!!!!frac{1}{n} $$
but since the set of squarefree numbers has a positive density in $mathbb{N}$ ($frac{6}{pi^2}$, which is also the probability that two "random integers" are coprime), by summation by parts it follows that
$$sum_{substack{1leq nleq N\ntext{ squarefree}}}!!!!frac{1}{n}=O(1)+frac{6}{pi^2}sum_{n=1}^{N}frac{1}{n}=frac{6}{pi^2}log(N)+O(1) $$
so the original product is divergent.
add a comment |
An alternative approach: $frac{p}{p-1}geq 1+frac{1}{p}$ gives
$$ prod_{p}frac{p}{p-1}geq prod_{p}left(1+frac{1}{p}right) =!!!!!!!! sum_{substack{ngeq 1\ntext{ squarefree}}}!!!!!!!frac{1}{n} $$
but since the set of squarefree numbers has a positive density in $mathbb{N}$ ($frac{6}{pi^2}$, which is also the probability that two "random integers" are coprime), by summation by parts it follows that
$$sum_{substack{1leq nleq N\ntext{ squarefree}}}!!!!frac{1}{n}=O(1)+frac{6}{pi^2}sum_{n=1}^{N}frac{1}{n}=frac{6}{pi^2}log(N)+O(1) $$
so the original product is divergent.
An alternative approach: $frac{p}{p-1}geq 1+frac{1}{p}$ gives
$$ prod_{p}frac{p}{p-1}geq prod_{p}left(1+frac{1}{p}right) =!!!!!!!! sum_{substack{ngeq 1\ntext{ squarefree}}}!!!!!!!frac{1}{n} $$
but since the set of squarefree numbers has a positive density in $mathbb{N}$ ($frac{6}{pi^2}$, which is also the probability that two "random integers" are coprime), by summation by parts it follows that
$$sum_{substack{1leq nleq N\ntext{ squarefree}}}!!!!frac{1}{n}=O(1)+frac{6}{pi^2}sum_{n=1}^{N}frac{1}{n}=frac{6}{pi^2}log(N)+O(1) $$
so the original product is divergent.
answered Nov 24 at 18:24
Jack D'Aurizio
285k33277655
285k33277655
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3011661%2fsolution-to-infinite-product-prod-p-primes-infty-fracpp-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
en.wikipedia.org/wiki/Euler_product
– R. Burton
Nov 24 at 15:19