Make y the subject of x = y/(y-z)












1












$begingroup$


I'm struggling with this GCSE question, but I think I'm just being silly. I've removed the fraction, making it:



x(y-z) = y



And then tried removing the brackets, making it:



xy-xz = y



But I'm not sure how to get all of the y terms onto one side of the equation in this situation, or whether I've gone about this the wrong way.



Any help would be appreciated! Retaking my GCSE and I'm extremely rusty!



Thanks,
Jay










share|cite|improve this question









$endgroup$












  • $begingroup$
    For your next step, say $xy-y=xz$
    $endgroup$
    – turkeyhundt
    Jul 15 '16 at 17:00






  • 1




    $begingroup$
    The key to getting all the $y$ terms on one side is to ... get all the y terms on one side. So move the $xy$ term to the other side, as it has a y in it, then factor that and get that $y = frac{xz}{x-1}$.
    $endgroup$
    – Klint Qinami
    Jul 15 '16 at 17:06










  • $begingroup$
    Ah, I understand now. Thanks for your time! - Jay
    $endgroup$
    – Jay
    Jul 15 '16 at 17:26










  • $begingroup$
    What is a "subject" in mathematics?
    $endgroup$
    – Christian Blatter
    Jul 15 '16 at 17:58
















1












$begingroup$


I'm struggling with this GCSE question, but I think I'm just being silly. I've removed the fraction, making it:



x(y-z) = y



And then tried removing the brackets, making it:



xy-xz = y



But I'm not sure how to get all of the y terms onto one side of the equation in this situation, or whether I've gone about this the wrong way.



Any help would be appreciated! Retaking my GCSE and I'm extremely rusty!



Thanks,
Jay










share|cite|improve this question









$endgroup$












  • $begingroup$
    For your next step, say $xy-y=xz$
    $endgroup$
    – turkeyhundt
    Jul 15 '16 at 17:00






  • 1




    $begingroup$
    The key to getting all the $y$ terms on one side is to ... get all the y terms on one side. So move the $xy$ term to the other side, as it has a y in it, then factor that and get that $y = frac{xz}{x-1}$.
    $endgroup$
    – Klint Qinami
    Jul 15 '16 at 17:06










  • $begingroup$
    Ah, I understand now. Thanks for your time! - Jay
    $endgroup$
    – Jay
    Jul 15 '16 at 17:26










  • $begingroup$
    What is a "subject" in mathematics?
    $endgroup$
    – Christian Blatter
    Jul 15 '16 at 17:58














1












1








1





$begingroup$


I'm struggling with this GCSE question, but I think I'm just being silly. I've removed the fraction, making it:



x(y-z) = y



And then tried removing the brackets, making it:



xy-xz = y



But I'm not sure how to get all of the y terms onto one side of the equation in this situation, or whether I've gone about this the wrong way.



Any help would be appreciated! Retaking my GCSE and I'm extremely rusty!



Thanks,
Jay










share|cite|improve this question









$endgroup$




I'm struggling with this GCSE question, but I think I'm just being silly. I've removed the fraction, making it:



x(y-z) = y



And then tried removing the brackets, making it:



xy-xz = y



But I'm not sure how to get all of the y terms onto one side of the equation in this situation, or whether I've gone about this the wrong way.



Any help would be appreciated! Retaking my GCSE and I'm extremely rusty!



Thanks,
Jay







recreational-mathematics






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jul 15 '16 at 16:55









JayJay

62




62












  • $begingroup$
    For your next step, say $xy-y=xz$
    $endgroup$
    – turkeyhundt
    Jul 15 '16 at 17:00






  • 1




    $begingroup$
    The key to getting all the $y$ terms on one side is to ... get all the y terms on one side. So move the $xy$ term to the other side, as it has a y in it, then factor that and get that $y = frac{xz}{x-1}$.
    $endgroup$
    – Klint Qinami
    Jul 15 '16 at 17:06










  • $begingroup$
    Ah, I understand now. Thanks for your time! - Jay
    $endgroup$
    – Jay
    Jul 15 '16 at 17:26










  • $begingroup$
    What is a "subject" in mathematics?
    $endgroup$
    – Christian Blatter
    Jul 15 '16 at 17:58


















  • $begingroup$
    For your next step, say $xy-y=xz$
    $endgroup$
    – turkeyhundt
    Jul 15 '16 at 17:00






  • 1




    $begingroup$
    The key to getting all the $y$ terms on one side is to ... get all the y terms on one side. So move the $xy$ term to the other side, as it has a y in it, then factor that and get that $y = frac{xz}{x-1}$.
    $endgroup$
    – Klint Qinami
    Jul 15 '16 at 17:06










  • $begingroup$
    Ah, I understand now. Thanks for your time! - Jay
    $endgroup$
    – Jay
    Jul 15 '16 at 17:26










  • $begingroup$
    What is a "subject" in mathematics?
    $endgroup$
    – Christian Blatter
    Jul 15 '16 at 17:58
















$begingroup$
For your next step, say $xy-y=xz$
$endgroup$
– turkeyhundt
Jul 15 '16 at 17:00




$begingroup$
For your next step, say $xy-y=xz$
$endgroup$
– turkeyhundt
Jul 15 '16 at 17:00




1




1




$begingroup$
The key to getting all the $y$ terms on one side is to ... get all the y terms on one side. So move the $xy$ term to the other side, as it has a y in it, then factor that and get that $y = frac{xz}{x-1}$.
$endgroup$
– Klint Qinami
Jul 15 '16 at 17:06




$begingroup$
The key to getting all the $y$ terms on one side is to ... get all the y terms on one side. So move the $xy$ term to the other side, as it has a y in it, then factor that and get that $y = frac{xz}{x-1}$.
$endgroup$
– Klint Qinami
Jul 15 '16 at 17:06












$begingroup$
Ah, I understand now. Thanks for your time! - Jay
$endgroup$
– Jay
Jul 15 '16 at 17:26




$begingroup$
Ah, I understand now. Thanks for your time! - Jay
$endgroup$
– Jay
Jul 15 '16 at 17:26












$begingroup$
What is a "subject" in mathematics?
$endgroup$
– Christian Blatter
Jul 15 '16 at 17:58




$begingroup$
What is a "subject" in mathematics?
$endgroup$
– Christian Blatter
Jul 15 '16 at 17:58










1 Answer
1






active

oldest

votes


















0












$begingroup$

There are four steps to solving algebraic equations which are linear in one of the variables:



SIMPLIFY-SORT-FACTOR-DIVIDE



Example: Solve for $x$



begin{equation}
dfrac{1-ax}{2}=dfrac{frac{1}{x}-1}{frac{3}{x}}
end{equation}



(1) Simplify:



(a) Remove all fractions by reducing any complex fractions then multiplying both sides of the equation by the least common denominator of remaining fractions on either side.
begin{equation}
dfrac{1-ax}{2}=dfrac{frac{1}{x}-1}{frac{3}{x}}cdotdfrac{x}{x}
end{equation}
begin{equation}
dfrac{1-ax}{2}=dfrac{1-x}{3}
end{equation}
begin{equation}
6cdotdfrac{1-ax}{2}=6cdotdfrac{1-x}{3}
end{equation}
begin{equation}
3(1-ax)=2(1-x)
end{equation}



(b) Remove all parentheses using the distributive property.
begin{equation}
3-3ax=2-2x
end{equation}



(c) Combine all like terms appearing on the same side of the equation.



Not applicable in this example.



(2) Sort:



Add or subtract terms to both sides of the equation in order that all terms containing the variable to be solved for are on one side of the equation while all the remaining terms are on the other side.



begin{equation}
2x-3ax=2-3
end{equation}



begin{equation}
2x-3ax=-1
end{equation}



(3) Factor:



Factor out the variable to be solved for from the terms containing it as a factor.
begin{equation}
(2-3a)x=-1
end{equation}



(4) Divide:



Divide both sides by the coefficient of the factor of the variable to be solved for.



begin{equation}
x=dfrac{-1}{2-3a}=dfrac{1}{3a-2}
end{equation}



Note that at the conclusion of the SIMPLIFY step you may solve for any of the other variables for which the equation is linear. As an exercise you might go back to the simplified equation after step 1b and solve the equation for the variable $a$ in terms of the variable $x$.






share|cite|improve this answer









$endgroup$














    Your Answer








    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1860499%2fmake-y-the-subject-of-x-y-y-z%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    There are four steps to solving algebraic equations which are linear in one of the variables:



    SIMPLIFY-SORT-FACTOR-DIVIDE



    Example: Solve for $x$



    begin{equation}
    dfrac{1-ax}{2}=dfrac{frac{1}{x}-1}{frac{3}{x}}
    end{equation}



    (1) Simplify:



    (a) Remove all fractions by reducing any complex fractions then multiplying both sides of the equation by the least common denominator of remaining fractions on either side.
    begin{equation}
    dfrac{1-ax}{2}=dfrac{frac{1}{x}-1}{frac{3}{x}}cdotdfrac{x}{x}
    end{equation}
    begin{equation}
    dfrac{1-ax}{2}=dfrac{1-x}{3}
    end{equation}
    begin{equation}
    6cdotdfrac{1-ax}{2}=6cdotdfrac{1-x}{3}
    end{equation}
    begin{equation}
    3(1-ax)=2(1-x)
    end{equation}



    (b) Remove all parentheses using the distributive property.
    begin{equation}
    3-3ax=2-2x
    end{equation}



    (c) Combine all like terms appearing on the same side of the equation.



    Not applicable in this example.



    (2) Sort:



    Add or subtract terms to both sides of the equation in order that all terms containing the variable to be solved for are on one side of the equation while all the remaining terms are on the other side.



    begin{equation}
    2x-3ax=2-3
    end{equation}



    begin{equation}
    2x-3ax=-1
    end{equation}



    (3) Factor:



    Factor out the variable to be solved for from the terms containing it as a factor.
    begin{equation}
    (2-3a)x=-1
    end{equation}



    (4) Divide:



    Divide both sides by the coefficient of the factor of the variable to be solved for.



    begin{equation}
    x=dfrac{-1}{2-3a}=dfrac{1}{3a-2}
    end{equation}



    Note that at the conclusion of the SIMPLIFY step you may solve for any of the other variables for which the equation is linear. As an exercise you might go back to the simplified equation after step 1b and solve the equation for the variable $a$ in terms of the variable $x$.






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      There are four steps to solving algebraic equations which are linear in one of the variables:



      SIMPLIFY-SORT-FACTOR-DIVIDE



      Example: Solve for $x$



      begin{equation}
      dfrac{1-ax}{2}=dfrac{frac{1}{x}-1}{frac{3}{x}}
      end{equation}



      (1) Simplify:



      (a) Remove all fractions by reducing any complex fractions then multiplying both sides of the equation by the least common denominator of remaining fractions on either side.
      begin{equation}
      dfrac{1-ax}{2}=dfrac{frac{1}{x}-1}{frac{3}{x}}cdotdfrac{x}{x}
      end{equation}
      begin{equation}
      dfrac{1-ax}{2}=dfrac{1-x}{3}
      end{equation}
      begin{equation}
      6cdotdfrac{1-ax}{2}=6cdotdfrac{1-x}{3}
      end{equation}
      begin{equation}
      3(1-ax)=2(1-x)
      end{equation}



      (b) Remove all parentheses using the distributive property.
      begin{equation}
      3-3ax=2-2x
      end{equation}



      (c) Combine all like terms appearing on the same side of the equation.



      Not applicable in this example.



      (2) Sort:



      Add or subtract terms to both sides of the equation in order that all terms containing the variable to be solved for are on one side of the equation while all the remaining terms are on the other side.



      begin{equation}
      2x-3ax=2-3
      end{equation}



      begin{equation}
      2x-3ax=-1
      end{equation}



      (3) Factor:



      Factor out the variable to be solved for from the terms containing it as a factor.
      begin{equation}
      (2-3a)x=-1
      end{equation}



      (4) Divide:



      Divide both sides by the coefficient of the factor of the variable to be solved for.



      begin{equation}
      x=dfrac{-1}{2-3a}=dfrac{1}{3a-2}
      end{equation}



      Note that at the conclusion of the SIMPLIFY step you may solve for any of the other variables for which the equation is linear. As an exercise you might go back to the simplified equation after step 1b and solve the equation for the variable $a$ in terms of the variable $x$.






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        There are four steps to solving algebraic equations which are linear in one of the variables:



        SIMPLIFY-SORT-FACTOR-DIVIDE



        Example: Solve for $x$



        begin{equation}
        dfrac{1-ax}{2}=dfrac{frac{1}{x}-1}{frac{3}{x}}
        end{equation}



        (1) Simplify:



        (a) Remove all fractions by reducing any complex fractions then multiplying both sides of the equation by the least common denominator of remaining fractions on either side.
        begin{equation}
        dfrac{1-ax}{2}=dfrac{frac{1}{x}-1}{frac{3}{x}}cdotdfrac{x}{x}
        end{equation}
        begin{equation}
        dfrac{1-ax}{2}=dfrac{1-x}{3}
        end{equation}
        begin{equation}
        6cdotdfrac{1-ax}{2}=6cdotdfrac{1-x}{3}
        end{equation}
        begin{equation}
        3(1-ax)=2(1-x)
        end{equation}



        (b) Remove all parentheses using the distributive property.
        begin{equation}
        3-3ax=2-2x
        end{equation}



        (c) Combine all like terms appearing on the same side of the equation.



        Not applicable in this example.



        (2) Sort:



        Add or subtract terms to both sides of the equation in order that all terms containing the variable to be solved for are on one side of the equation while all the remaining terms are on the other side.



        begin{equation}
        2x-3ax=2-3
        end{equation}



        begin{equation}
        2x-3ax=-1
        end{equation}



        (3) Factor:



        Factor out the variable to be solved for from the terms containing it as a factor.
        begin{equation}
        (2-3a)x=-1
        end{equation}



        (4) Divide:



        Divide both sides by the coefficient of the factor of the variable to be solved for.



        begin{equation}
        x=dfrac{-1}{2-3a}=dfrac{1}{3a-2}
        end{equation}



        Note that at the conclusion of the SIMPLIFY step you may solve for any of the other variables for which the equation is linear. As an exercise you might go back to the simplified equation after step 1b and solve the equation for the variable $a$ in terms of the variable $x$.






        share|cite|improve this answer









        $endgroup$



        There are four steps to solving algebraic equations which are linear in one of the variables:



        SIMPLIFY-SORT-FACTOR-DIVIDE



        Example: Solve for $x$



        begin{equation}
        dfrac{1-ax}{2}=dfrac{frac{1}{x}-1}{frac{3}{x}}
        end{equation}



        (1) Simplify:



        (a) Remove all fractions by reducing any complex fractions then multiplying both sides of the equation by the least common denominator of remaining fractions on either side.
        begin{equation}
        dfrac{1-ax}{2}=dfrac{frac{1}{x}-1}{frac{3}{x}}cdotdfrac{x}{x}
        end{equation}
        begin{equation}
        dfrac{1-ax}{2}=dfrac{1-x}{3}
        end{equation}
        begin{equation}
        6cdotdfrac{1-ax}{2}=6cdotdfrac{1-x}{3}
        end{equation}
        begin{equation}
        3(1-ax)=2(1-x)
        end{equation}



        (b) Remove all parentheses using the distributive property.
        begin{equation}
        3-3ax=2-2x
        end{equation}



        (c) Combine all like terms appearing on the same side of the equation.



        Not applicable in this example.



        (2) Sort:



        Add or subtract terms to both sides of the equation in order that all terms containing the variable to be solved for are on one side of the equation while all the remaining terms are on the other side.



        begin{equation}
        2x-3ax=2-3
        end{equation}



        begin{equation}
        2x-3ax=-1
        end{equation}



        (3) Factor:



        Factor out the variable to be solved for from the terms containing it as a factor.
        begin{equation}
        (2-3a)x=-1
        end{equation}



        (4) Divide:



        Divide both sides by the coefficient of the factor of the variable to be solved for.



        begin{equation}
        x=dfrac{-1}{2-3a}=dfrac{1}{3a-2}
        end{equation}



        Note that at the conclusion of the SIMPLIFY step you may solve for any of the other variables for which the equation is linear. As an exercise you might go back to the simplified equation after step 1b and solve the equation for the variable $a$ in terms of the variable $x$.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jul 15 '16 at 17:31









        John Wayland BalesJohn Wayland Bales

        15.3k21238




        15.3k21238






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1860499%2fmake-y-the-subject-of-x-y-y-z%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            How do I know what Microsoft account the skydrive app is syncing to?

            When does type information flow backwards in C++?

            Grease: Live!