If $vec{nabla} times langle P,Q,Q rangle=vec{0}$ iff $Pdx+Qdy+Rdz$ is exact differential form.












0












$begingroup$


If $vec{nabla} times langle P,Q,Rrangle=vec{0}$ iff $Pdx+Qdy+Rdz$ is an exact differential form.



My attempt:-



If $Pdx+Qdy+Rdz$ is an exact differential form. Then there exists $U(x,y,z): dU=Pdx+Qdy+Rdz$. From the mixed partial theorem, It is easy to prove that $curl langle P,Q, Rrangle=vec{0}$.



If $vec{nabla} times langle P,Q,R rangle=vec{0}$



$implies R_y=Q_z,R_x=P_z $ and $Q_x=P_y$. How do I prove the existence of scalar function $U$:$dU=Pdx+Qdy+Rdz$?










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    If $vec{nabla} times langle P,Q,Rrangle=vec{0}$ iff $Pdx+Qdy+Rdz$ is an exact differential form.



    My attempt:-



    If $Pdx+Qdy+Rdz$ is an exact differential form. Then there exists $U(x,y,z): dU=Pdx+Qdy+Rdz$. From the mixed partial theorem, It is easy to prove that $curl langle P,Q, Rrangle=vec{0}$.



    If $vec{nabla} times langle P,Q,R rangle=vec{0}$



    $implies R_y=Q_z,R_x=P_z $ and $Q_x=P_y$. How do I prove the existence of scalar function $U$:$dU=Pdx+Qdy+Rdz$?










    share|cite|improve this question









    $endgroup$















      0












      0








      0


      1



      $begingroup$


      If $vec{nabla} times langle P,Q,Rrangle=vec{0}$ iff $Pdx+Qdy+Rdz$ is an exact differential form.



      My attempt:-



      If $Pdx+Qdy+Rdz$ is an exact differential form. Then there exists $U(x,y,z): dU=Pdx+Qdy+Rdz$. From the mixed partial theorem, It is easy to prove that $curl langle P,Q, Rrangle=vec{0}$.



      If $vec{nabla} times langle P,Q,R rangle=vec{0}$



      $implies R_y=Q_z,R_x=P_z $ and $Q_x=P_y$. How do I prove the existence of scalar function $U$:$dU=Pdx+Qdy+Rdz$?










      share|cite|improve this question









      $endgroup$




      If $vec{nabla} times langle P,Q,Rrangle=vec{0}$ iff $Pdx+Qdy+Rdz$ is an exact differential form.



      My attempt:-



      If $Pdx+Qdy+Rdz$ is an exact differential form. Then there exists $U(x,y,z): dU=Pdx+Qdy+Rdz$. From the mixed partial theorem, It is easy to prove that $curl langle P,Q, Rrangle=vec{0}$.



      If $vec{nabla} times langle P,Q,R rangle=vec{0}$



      $implies R_y=Q_z,R_x=P_z $ and $Q_x=P_y$. How do I prove the existence of scalar function $U$:$dU=Pdx+Qdy+Rdz$?







      ordinary-differential-equations pde scalar-fields






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 9 at 4:51









      Math geekMath geek

      69111




      69111






















          2 Answers
          2






          active

          oldest

          votes


















          0












          $begingroup$

          This is quite standard. However, you need an additional assumption to prove your result. The easiest is to assume that the domain on which $dU$ is defined is a star domain.



          You can then find $U$ by simply integrating $dU$ from $vec{r}_0= (x_0,y_0,z_0)$ to $vec{r}=(x,y,z)$ along the path $$vec{gamma(}t) = tvec{r}_0+ (1-t)vec{r},qquad tin[0,1].$$
          In particular, we set
          $$U(vec{r}) = int_{gamma}(Pdx+Qdy+Rdz),. tag{1} $$



          Now, what is left to show is that $dU$ is indeed $(P,Q,R)$. The relevant property thereby is that in (1) the value of $U$ is independent of he path choses (and only depends on the endpoints). This fact is due to Stokes theorem and the vanishing of the curl. The result then follows from the fundamental theorem of calculus.






          share|cite|improve this answer









          $endgroup$





















            -1












            $begingroup$

            In general we know that
            $$dU = U_x dx + U_y dy + U_z dz $$
            then you want to find $U$ such that
            $$P = U_x, Q = U_y, Z = U_z.$$
            Note that from the curl equation you get that $U_{xy} = U_{yx}$ and $U_{xz}=U_{zx}$ and $U_{yz}=U_{zy}.$ From the first equation you get that:
            $$U = int P(x,y,z)dx + phi(y,z)$$
            From the second equation you get that:
            $$Q = U_y = frac{partial }{partial y}int Pdx + phi_y implies phi_y =Q - frac{partial }{partial y}int Pdx.$$
            Since $phi_y$ is a function of $y$ and $z$ we have that $phi_{yx} = 0$ and thus
            $$frac{partial }{partial x}left(Q -frac{partial }{partial y}int Pdxright)=0.$$
            Thus
            $$phi (y,z) = int Q(x,y,z)dy-int frac{partial }{partial t}left(int P(x,y,z)dxright)dt + h(z).$$
            Thus our current expression for $U$ is
            $$U = int P(x,y,z)dx + int Q(x,y,z)dy-int frac{partial }{partial t}left(int P(x,y,z)dxright)dt + h(z).$$
            Now recall that
            $$Z = U_z = frac{partial }{partial z}int P(x,y,z)dx + frac{partial }{partial z}int Q(x,y,z)dy-frac{partial }{partial z}int frac{partial }{partial t}left(int P(x,y,z)dxright)dt + h_z(z).$$
            Thus
            $$frac{dh}{dz} = Z - frac{partial }{partial z}int P(x,y,z)dx - frac{partial }{partial z}int Q(x,y,z)dy+frac{partial }{partial z}int frac{partial }{partial t}left(int P(x,y,z)dxright)dt.$$
            And so
            $$h(z) = int Z(x,y,z) dz - int frac{partial }{partial t}left(int P(x,y,z)dxright) dt - int frac{partial }{partial t}left(int Q(x,y,z)dyright)dt+
            int frac{partial }{partial m}left[ intfrac{partial }{partial t}left(int P(x,y,z)dxright)dt right]dm.$$

            Thus we have
            $$U = int P(x,y,z)dx + int Q(x,y,z)dy-int frac{partial }{partial t}left(int P(x,y,z)dxright)dt + int Z(x,y,z) dz - int frac{partial }{partial t}left(int P(x,y,z)dxright) dt - int frac{partial }{partial t}left(int Q(x,y,z)dyright)dt+
            int frac{partial }{partial m}left[ intfrac{partial }{partial t}left(int P(x,y,z)dxright)dt right]dm$$






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              Where do we use $curl(P,Q,R)=vec{0}$
              $endgroup$
              – Math geek
              Jan 9 at 6:03










            • $begingroup$
              $frac{partial }{partial x}left(Q -frac{partial }{partial y}int Pdxright)=Q_x-P_y.$ Since $Q_x = P_y$ you get that $frac{partial }{partial x}left(Q -frac{partial }{partial y}int Pdxright) = 0.$
              $endgroup$
              – model_checker
              Jan 9 at 6:06










            • $begingroup$
              $$phi_y =Q - frac{partial }{partial y}int Pdx.$$, When we integrate with respect to $y$. How do you get $$phi (y,z) = int Q(x,y,z)dy-int frac{partial }{partial t}left(int P(x,y,z)dxright)dt + h(z).$$? I am getting $$phi= int Q(x,y,z)dy-int P(x,y,z)dx+h(z)$$.
              $endgroup$
              – Math geek
              Jan 9 at 6:17












            • $begingroup$
              Why do you take $frac{partial}{partial t}$? please explain.
              $endgroup$
              – Math geek
              Jan 9 at 12:05












            Your Answer








            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067085%2fif-vec-nabla-times-langle-p-q-q-rangle-vec0-iff-pdxqdyrdz-is-exac%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0












            $begingroup$

            This is quite standard. However, you need an additional assumption to prove your result. The easiest is to assume that the domain on which $dU$ is defined is a star domain.



            You can then find $U$ by simply integrating $dU$ from $vec{r}_0= (x_0,y_0,z_0)$ to $vec{r}=(x,y,z)$ along the path $$vec{gamma(}t) = tvec{r}_0+ (1-t)vec{r},qquad tin[0,1].$$
            In particular, we set
            $$U(vec{r}) = int_{gamma}(Pdx+Qdy+Rdz),. tag{1} $$



            Now, what is left to show is that $dU$ is indeed $(P,Q,R)$. The relevant property thereby is that in (1) the value of $U$ is independent of he path choses (and only depends on the endpoints). This fact is due to Stokes theorem and the vanishing of the curl. The result then follows from the fundamental theorem of calculus.






            share|cite|improve this answer









            $endgroup$


















              0












              $begingroup$

              This is quite standard. However, you need an additional assumption to prove your result. The easiest is to assume that the domain on which $dU$ is defined is a star domain.



              You can then find $U$ by simply integrating $dU$ from $vec{r}_0= (x_0,y_0,z_0)$ to $vec{r}=(x,y,z)$ along the path $$vec{gamma(}t) = tvec{r}_0+ (1-t)vec{r},qquad tin[0,1].$$
              In particular, we set
              $$U(vec{r}) = int_{gamma}(Pdx+Qdy+Rdz),. tag{1} $$



              Now, what is left to show is that $dU$ is indeed $(P,Q,R)$. The relevant property thereby is that in (1) the value of $U$ is independent of he path choses (and only depends on the endpoints). This fact is due to Stokes theorem and the vanishing of the curl. The result then follows from the fundamental theorem of calculus.






              share|cite|improve this answer









              $endgroup$
















                0












                0








                0





                $begingroup$

                This is quite standard. However, you need an additional assumption to prove your result. The easiest is to assume that the domain on which $dU$ is defined is a star domain.



                You can then find $U$ by simply integrating $dU$ from $vec{r}_0= (x_0,y_0,z_0)$ to $vec{r}=(x,y,z)$ along the path $$vec{gamma(}t) = tvec{r}_0+ (1-t)vec{r},qquad tin[0,1].$$
                In particular, we set
                $$U(vec{r}) = int_{gamma}(Pdx+Qdy+Rdz),. tag{1} $$



                Now, what is left to show is that $dU$ is indeed $(P,Q,R)$. The relevant property thereby is that in (1) the value of $U$ is independent of he path choses (and only depends on the endpoints). This fact is due to Stokes theorem and the vanishing of the curl. The result then follows from the fundamental theorem of calculus.






                share|cite|improve this answer









                $endgroup$



                This is quite standard. However, you need an additional assumption to prove your result. The easiest is to assume that the domain on which $dU$ is defined is a star domain.



                You can then find $U$ by simply integrating $dU$ from $vec{r}_0= (x_0,y_0,z_0)$ to $vec{r}=(x,y,z)$ along the path $$vec{gamma(}t) = tvec{r}_0+ (1-t)vec{r},qquad tin[0,1].$$
                In particular, we set
                $$U(vec{r}) = int_{gamma}(Pdx+Qdy+Rdz),. tag{1} $$



                Now, what is left to show is that $dU$ is indeed $(P,Q,R)$. The relevant property thereby is that in (1) the value of $U$ is independent of he path choses (and only depends on the endpoints). This fact is due to Stokes theorem and the vanishing of the curl. The result then follows from the fundamental theorem of calculus.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Jan 9 at 5:52









                FabianFabian

                20.1k3774




                20.1k3774























                    -1












                    $begingroup$

                    In general we know that
                    $$dU = U_x dx + U_y dy + U_z dz $$
                    then you want to find $U$ such that
                    $$P = U_x, Q = U_y, Z = U_z.$$
                    Note that from the curl equation you get that $U_{xy} = U_{yx}$ and $U_{xz}=U_{zx}$ and $U_{yz}=U_{zy}.$ From the first equation you get that:
                    $$U = int P(x,y,z)dx + phi(y,z)$$
                    From the second equation you get that:
                    $$Q = U_y = frac{partial }{partial y}int Pdx + phi_y implies phi_y =Q - frac{partial }{partial y}int Pdx.$$
                    Since $phi_y$ is a function of $y$ and $z$ we have that $phi_{yx} = 0$ and thus
                    $$frac{partial }{partial x}left(Q -frac{partial }{partial y}int Pdxright)=0.$$
                    Thus
                    $$phi (y,z) = int Q(x,y,z)dy-int frac{partial }{partial t}left(int P(x,y,z)dxright)dt + h(z).$$
                    Thus our current expression for $U$ is
                    $$U = int P(x,y,z)dx + int Q(x,y,z)dy-int frac{partial }{partial t}left(int P(x,y,z)dxright)dt + h(z).$$
                    Now recall that
                    $$Z = U_z = frac{partial }{partial z}int P(x,y,z)dx + frac{partial }{partial z}int Q(x,y,z)dy-frac{partial }{partial z}int frac{partial }{partial t}left(int P(x,y,z)dxright)dt + h_z(z).$$
                    Thus
                    $$frac{dh}{dz} = Z - frac{partial }{partial z}int P(x,y,z)dx - frac{partial }{partial z}int Q(x,y,z)dy+frac{partial }{partial z}int frac{partial }{partial t}left(int P(x,y,z)dxright)dt.$$
                    And so
                    $$h(z) = int Z(x,y,z) dz - int frac{partial }{partial t}left(int P(x,y,z)dxright) dt - int frac{partial }{partial t}left(int Q(x,y,z)dyright)dt+
                    int frac{partial }{partial m}left[ intfrac{partial }{partial t}left(int P(x,y,z)dxright)dt right]dm.$$

                    Thus we have
                    $$U = int P(x,y,z)dx + int Q(x,y,z)dy-int frac{partial }{partial t}left(int P(x,y,z)dxright)dt + int Z(x,y,z) dz - int frac{partial }{partial t}left(int P(x,y,z)dxright) dt - int frac{partial }{partial t}left(int Q(x,y,z)dyright)dt+
                    int frac{partial }{partial m}left[ intfrac{partial }{partial t}left(int P(x,y,z)dxright)dt right]dm$$






                    share|cite|improve this answer









                    $endgroup$













                    • $begingroup$
                      Where do we use $curl(P,Q,R)=vec{0}$
                      $endgroup$
                      – Math geek
                      Jan 9 at 6:03










                    • $begingroup$
                      $frac{partial }{partial x}left(Q -frac{partial }{partial y}int Pdxright)=Q_x-P_y.$ Since $Q_x = P_y$ you get that $frac{partial }{partial x}left(Q -frac{partial }{partial y}int Pdxright) = 0.$
                      $endgroup$
                      – model_checker
                      Jan 9 at 6:06










                    • $begingroup$
                      $$phi_y =Q - frac{partial }{partial y}int Pdx.$$, When we integrate with respect to $y$. How do you get $$phi (y,z) = int Q(x,y,z)dy-int frac{partial }{partial t}left(int P(x,y,z)dxright)dt + h(z).$$? I am getting $$phi= int Q(x,y,z)dy-int P(x,y,z)dx+h(z)$$.
                      $endgroup$
                      – Math geek
                      Jan 9 at 6:17












                    • $begingroup$
                      Why do you take $frac{partial}{partial t}$? please explain.
                      $endgroup$
                      – Math geek
                      Jan 9 at 12:05
















                    -1












                    $begingroup$

                    In general we know that
                    $$dU = U_x dx + U_y dy + U_z dz $$
                    then you want to find $U$ such that
                    $$P = U_x, Q = U_y, Z = U_z.$$
                    Note that from the curl equation you get that $U_{xy} = U_{yx}$ and $U_{xz}=U_{zx}$ and $U_{yz}=U_{zy}.$ From the first equation you get that:
                    $$U = int P(x,y,z)dx + phi(y,z)$$
                    From the second equation you get that:
                    $$Q = U_y = frac{partial }{partial y}int Pdx + phi_y implies phi_y =Q - frac{partial }{partial y}int Pdx.$$
                    Since $phi_y$ is a function of $y$ and $z$ we have that $phi_{yx} = 0$ and thus
                    $$frac{partial }{partial x}left(Q -frac{partial }{partial y}int Pdxright)=0.$$
                    Thus
                    $$phi (y,z) = int Q(x,y,z)dy-int frac{partial }{partial t}left(int P(x,y,z)dxright)dt + h(z).$$
                    Thus our current expression for $U$ is
                    $$U = int P(x,y,z)dx + int Q(x,y,z)dy-int frac{partial }{partial t}left(int P(x,y,z)dxright)dt + h(z).$$
                    Now recall that
                    $$Z = U_z = frac{partial }{partial z}int P(x,y,z)dx + frac{partial }{partial z}int Q(x,y,z)dy-frac{partial }{partial z}int frac{partial }{partial t}left(int P(x,y,z)dxright)dt + h_z(z).$$
                    Thus
                    $$frac{dh}{dz} = Z - frac{partial }{partial z}int P(x,y,z)dx - frac{partial }{partial z}int Q(x,y,z)dy+frac{partial }{partial z}int frac{partial }{partial t}left(int P(x,y,z)dxright)dt.$$
                    And so
                    $$h(z) = int Z(x,y,z) dz - int frac{partial }{partial t}left(int P(x,y,z)dxright) dt - int frac{partial }{partial t}left(int Q(x,y,z)dyright)dt+
                    int frac{partial }{partial m}left[ intfrac{partial }{partial t}left(int P(x,y,z)dxright)dt right]dm.$$

                    Thus we have
                    $$U = int P(x,y,z)dx + int Q(x,y,z)dy-int frac{partial }{partial t}left(int P(x,y,z)dxright)dt + int Z(x,y,z) dz - int frac{partial }{partial t}left(int P(x,y,z)dxright) dt - int frac{partial }{partial t}left(int Q(x,y,z)dyright)dt+
                    int frac{partial }{partial m}left[ intfrac{partial }{partial t}left(int P(x,y,z)dxright)dt right]dm$$






                    share|cite|improve this answer









                    $endgroup$













                    • $begingroup$
                      Where do we use $curl(P,Q,R)=vec{0}$
                      $endgroup$
                      – Math geek
                      Jan 9 at 6:03










                    • $begingroup$
                      $frac{partial }{partial x}left(Q -frac{partial }{partial y}int Pdxright)=Q_x-P_y.$ Since $Q_x = P_y$ you get that $frac{partial }{partial x}left(Q -frac{partial }{partial y}int Pdxright) = 0.$
                      $endgroup$
                      – model_checker
                      Jan 9 at 6:06










                    • $begingroup$
                      $$phi_y =Q - frac{partial }{partial y}int Pdx.$$, When we integrate with respect to $y$. How do you get $$phi (y,z) = int Q(x,y,z)dy-int frac{partial }{partial t}left(int P(x,y,z)dxright)dt + h(z).$$? I am getting $$phi= int Q(x,y,z)dy-int P(x,y,z)dx+h(z)$$.
                      $endgroup$
                      – Math geek
                      Jan 9 at 6:17












                    • $begingroup$
                      Why do you take $frac{partial}{partial t}$? please explain.
                      $endgroup$
                      – Math geek
                      Jan 9 at 12:05














                    -1












                    -1








                    -1





                    $begingroup$

                    In general we know that
                    $$dU = U_x dx + U_y dy + U_z dz $$
                    then you want to find $U$ such that
                    $$P = U_x, Q = U_y, Z = U_z.$$
                    Note that from the curl equation you get that $U_{xy} = U_{yx}$ and $U_{xz}=U_{zx}$ and $U_{yz}=U_{zy}.$ From the first equation you get that:
                    $$U = int P(x,y,z)dx + phi(y,z)$$
                    From the second equation you get that:
                    $$Q = U_y = frac{partial }{partial y}int Pdx + phi_y implies phi_y =Q - frac{partial }{partial y}int Pdx.$$
                    Since $phi_y$ is a function of $y$ and $z$ we have that $phi_{yx} = 0$ and thus
                    $$frac{partial }{partial x}left(Q -frac{partial }{partial y}int Pdxright)=0.$$
                    Thus
                    $$phi (y,z) = int Q(x,y,z)dy-int frac{partial }{partial t}left(int P(x,y,z)dxright)dt + h(z).$$
                    Thus our current expression for $U$ is
                    $$U = int P(x,y,z)dx + int Q(x,y,z)dy-int frac{partial }{partial t}left(int P(x,y,z)dxright)dt + h(z).$$
                    Now recall that
                    $$Z = U_z = frac{partial }{partial z}int P(x,y,z)dx + frac{partial }{partial z}int Q(x,y,z)dy-frac{partial }{partial z}int frac{partial }{partial t}left(int P(x,y,z)dxright)dt + h_z(z).$$
                    Thus
                    $$frac{dh}{dz} = Z - frac{partial }{partial z}int P(x,y,z)dx - frac{partial }{partial z}int Q(x,y,z)dy+frac{partial }{partial z}int frac{partial }{partial t}left(int P(x,y,z)dxright)dt.$$
                    And so
                    $$h(z) = int Z(x,y,z) dz - int frac{partial }{partial t}left(int P(x,y,z)dxright) dt - int frac{partial }{partial t}left(int Q(x,y,z)dyright)dt+
                    int frac{partial }{partial m}left[ intfrac{partial }{partial t}left(int P(x,y,z)dxright)dt right]dm.$$

                    Thus we have
                    $$U = int P(x,y,z)dx + int Q(x,y,z)dy-int frac{partial }{partial t}left(int P(x,y,z)dxright)dt + int Z(x,y,z) dz - int frac{partial }{partial t}left(int P(x,y,z)dxright) dt - int frac{partial }{partial t}left(int Q(x,y,z)dyright)dt+
                    int frac{partial }{partial m}left[ intfrac{partial }{partial t}left(int P(x,y,z)dxright)dt right]dm$$






                    share|cite|improve this answer









                    $endgroup$



                    In general we know that
                    $$dU = U_x dx + U_y dy + U_z dz $$
                    then you want to find $U$ such that
                    $$P = U_x, Q = U_y, Z = U_z.$$
                    Note that from the curl equation you get that $U_{xy} = U_{yx}$ and $U_{xz}=U_{zx}$ and $U_{yz}=U_{zy}.$ From the first equation you get that:
                    $$U = int P(x,y,z)dx + phi(y,z)$$
                    From the second equation you get that:
                    $$Q = U_y = frac{partial }{partial y}int Pdx + phi_y implies phi_y =Q - frac{partial }{partial y}int Pdx.$$
                    Since $phi_y$ is a function of $y$ and $z$ we have that $phi_{yx} = 0$ and thus
                    $$frac{partial }{partial x}left(Q -frac{partial }{partial y}int Pdxright)=0.$$
                    Thus
                    $$phi (y,z) = int Q(x,y,z)dy-int frac{partial }{partial t}left(int P(x,y,z)dxright)dt + h(z).$$
                    Thus our current expression for $U$ is
                    $$U = int P(x,y,z)dx + int Q(x,y,z)dy-int frac{partial }{partial t}left(int P(x,y,z)dxright)dt + h(z).$$
                    Now recall that
                    $$Z = U_z = frac{partial }{partial z}int P(x,y,z)dx + frac{partial }{partial z}int Q(x,y,z)dy-frac{partial }{partial z}int frac{partial }{partial t}left(int P(x,y,z)dxright)dt + h_z(z).$$
                    Thus
                    $$frac{dh}{dz} = Z - frac{partial }{partial z}int P(x,y,z)dx - frac{partial }{partial z}int Q(x,y,z)dy+frac{partial }{partial z}int frac{partial }{partial t}left(int P(x,y,z)dxright)dt.$$
                    And so
                    $$h(z) = int Z(x,y,z) dz - int frac{partial }{partial t}left(int P(x,y,z)dxright) dt - int frac{partial }{partial t}left(int Q(x,y,z)dyright)dt+
                    int frac{partial }{partial m}left[ intfrac{partial }{partial t}left(int P(x,y,z)dxright)dt right]dm.$$

                    Thus we have
                    $$U = int P(x,y,z)dx + int Q(x,y,z)dy-int frac{partial }{partial t}left(int P(x,y,z)dxright)dt + int Z(x,y,z) dz - int frac{partial }{partial t}left(int P(x,y,z)dxright) dt - int frac{partial }{partial t}left(int Q(x,y,z)dyright)dt+
                    int frac{partial }{partial m}left[ intfrac{partial }{partial t}left(int P(x,y,z)dxright)dt right]dm$$







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Jan 9 at 5:52









                    model_checkermodel_checker

                    4,45521931




                    4,45521931












                    • $begingroup$
                      Where do we use $curl(P,Q,R)=vec{0}$
                      $endgroup$
                      – Math geek
                      Jan 9 at 6:03










                    • $begingroup$
                      $frac{partial }{partial x}left(Q -frac{partial }{partial y}int Pdxright)=Q_x-P_y.$ Since $Q_x = P_y$ you get that $frac{partial }{partial x}left(Q -frac{partial }{partial y}int Pdxright) = 0.$
                      $endgroup$
                      – model_checker
                      Jan 9 at 6:06










                    • $begingroup$
                      $$phi_y =Q - frac{partial }{partial y}int Pdx.$$, When we integrate with respect to $y$. How do you get $$phi (y,z) = int Q(x,y,z)dy-int frac{partial }{partial t}left(int P(x,y,z)dxright)dt + h(z).$$? I am getting $$phi= int Q(x,y,z)dy-int P(x,y,z)dx+h(z)$$.
                      $endgroup$
                      – Math geek
                      Jan 9 at 6:17












                    • $begingroup$
                      Why do you take $frac{partial}{partial t}$? please explain.
                      $endgroup$
                      – Math geek
                      Jan 9 at 12:05


















                    • $begingroup$
                      Where do we use $curl(P,Q,R)=vec{0}$
                      $endgroup$
                      – Math geek
                      Jan 9 at 6:03










                    • $begingroup$
                      $frac{partial }{partial x}left(Q -frac{partial }{partial y}int Pdxright)=Q_x-P_y.$ Since $Q_x = P_y$ you get that $frac{partial }{partial x}left(Q -frac{partial }{partial y}int Pdxright) = 0.$
                      $endgroup$
                      – model_checker
                      Jan 9 at 6:06










                    • $begingroup$
                      $$phi_y =Q - frac{partial }{partial y}int Pdx.$$, When we integrate with respect to $y$. How do you get $$phi (y,z) = int Q(x,y,z)dy-int frac{partial }{partial t}left(int P(x,y,z)dxright)dt + h(z).$$? I am getting $$phi= int Q(x,y,z)dy-int P(x,y,z)dx+h(z)$$.
                      $endgroup$
                      – Math geek
                      Jan 9 at 6:17












                    • $begingroup$
                      Why do you take $frac{partial}{partial t}$? please explain.
                      $endgroup$
                      – Math geek
                      Jan 9 at 12:05
















                    $begingroup$
                    Where do we use $curl(P,Q,R)=vec{0}$
                    $endgroup$
                    – Math geek
                    Jan 9 at 6:03




                    $begingroup$
                    Where do we use $curl(P,Q,R)=vec{0}$
                    $endgroup$
                    – Math geek
                    Jan 9 at 6:03












                    $begingroup$
                    $frac{partial }{partial x}left(Q -frac{partial }{partial y}int Pdxright)=Q_x-P_y.$ Since $Q_x = P_y$ you get that $frac{partial }{partial x}left(Q -frac{partial }{partial y}int Pdxright) = 0.$
                    $endgroup$
                    – model_checker
                    Jan 9 at 6:06




                    $begingroup$
                    $frac{partial }{partial x}left(Q -frac{partial }{partial y}int Pdxright)=Q_x-P_y.$ Since $Q_x = P_y$ you get that $frac{partial }{partial x}left(Q -frac{partial }{partial y}int Pdxright) = 0.$
                    $endgroup$
                    – model_checker
                    Jan 9 at 6:06












                    $begingroup$
                    $$phi_y =Q - frac{partial }{partial y}int Pdx.$$, When we integrate with respect to $y$. How do you get $$phi (y,z) = int Q(x,y,z)dy-int frac{partial }{partial t}left(int P(x,y,z)dxright)dt + h(z).$$? I am getting $$phi= int Q(x,y,z)dy-int P(x,y,z)dx+h(z)$$.
                    $endgroup$
                    – Math geek
                    Jan 9 at 6:17






                    $begingroup$
                    $$phi_y =Q - frac{partial }{partial y}int Pdx.$$, When we integrate with respect to $y$. How do you get $$phi (y,z) = int Q(x,y,z)dy-int frac{partial }{partial t}left(int P(x,y,z)dxright)dt + h(z).$$? I am getting $$phi= int Q(x,y,z)dy-int P(x,y,z)dx+h(z)$$.
                    $endgroup$
                    – Math geek
                    Jan 9 at 6:17














                    $begingroup$
                    Why do you take $frac{partial}{partial t}$? please explain.
                    $endgroup$
                    – Math geek
                    Jan 9 at 12:05




                    $begingroup$
                    Why do you take $frac{partial}{partial t}$? please explain.
                    $endgroup$
                    – Math geek
                    Jan 9 at 12:05


















                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067085%2fif-vec-nabla-times-langle-p-q-q-rangle-vec0-iff-pdxqdyrdz-is-exac%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    How do I know what Microsoft account the skydrive app is syncing to?

                    When does type information flow backwards in C++?

                    Grease: Live!