If $vec{nabla} times langle P,Q,Q rangle=vec{0}$ iff $Pdx+Qdy+Rdz$ is exact differential form.
$begingroup$
If $vec{nabla} times langle P,Q,Rrangle=vec{0}$ iff $Pdx+Qdy+Rdz$ is an exact differential form.
My attempt:-
If $Pdx+Qdy+Rdz$ is an exact differential form. Then there exists $U(x,y,z): dU=Pdx+Qdy+Rdz$. From the mixed partial theorem, It is easy to prove that $curl langle P,Q, Rrangle=vec{0}$.
If $vec{nabla} times langle P,Q,R rangle=vec{0}$
$implies R_y=Q_z,R_x=P_z $ and $Q_x=P_y$. How do I prove the existence of scalar function $U$:$dU=Pdx+Qdy+Rdz$?
ordinary-differential-equations pde scalar-fields
$endgroup$
add a comment |
$begingroup$
If $vec{nabla} times langle P,Q,Rrangle=vec{0}$ iff $Pdx+Qdy+Rdz$ is an exact differential form.
My attempt:-
If $Pdx+Qdy+Rdz$ is an exact differential form. Then there exists $U(x,y,z): dU=Pdx+Qdy+Rdz$. From the mixed partial theorem, It is easy to prove that $curl langle P,Q, Rrangle=vec{0}$.
If $vec{nabla} times langle P,Q,R rangle=vec{0}$
$implies R_y=Q_z,R_x=P_z $ and $Q_x=P_y$. How do I prove the existence of scalar function $U$:$dU=Pdx+Qdy+Rdz$?
ordinary-differential-equations pde scalar-fields
$endgroup$
add a comment |
$begingroup$
If $vec{nabla} times langle P,Q,Rrangle=vec{0}$ iff $Pdx+Qdy+Rdz$ is an exact differential form.
My attempt:-
If $Pdx+Qdy+Rdz$ is an exact differential form. Then there exists $U(x,y,z): dU=Pdx+Qdy+Rdz$. From the mixed partial theorem, It is easy to prove that $curl langle P,Q, Rrangle=vec{0}$.
If $vec{nabla} times langle P,Q,R rangle=vec{0}$
$implies R_y=Q_z,R_x=P_z $ and $Q_x=P_y$. How do I prove the existence of scalar function $U$:$dU=Pdx+Qdy+Rdz$?
ordinary-differential-equations pde scalar-fields
$endgroup$
If $vec{nabla} times langle P,Q,Rrangle=vec{0}$ iff $Pdx+Qdy+Rdz$ is an exact differential form.
My attempt:-
If $Pdx+Qdy+Rdz$ is an exact differential form. Then there exists $U(x,y,z): dU=Pdx+Qdy+Rdz$. From the mixed partial theorem, It is easy to prove that $curl langle P,Q, Rrangle=vec{0}$.
If $vec{nabla} times langle P,Q,R rangle=vec{0}$
$implies R_y=Q_z,R_x=P_z $ and $Q_x=P_y$. How do I prove the existence of scalar function $U$:$dU=Pdx+Qdy+Rdz$?
ordinary-differential-equations pde scalar-fields
ordinary-differential-equations pde scalar-fields
asked Jan 9 at 4:51
Math geekMath geek
69111
69111
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
This is quite standard. However, you need an additional assumption to prove your result. The easiest is to assume that the domain on which $dU$ is defined is a star domain.
You can then find $U$ by simply integrating $dU$ from $vec{r}_0= (x_0,y_0,z_0)$ to $vec{r}=(x,y,z)$ along the path $$vec{gamma(}t) = tvec{r}_0+ (1-t)vec{r},qquad tin[0,1].$$
In particular, we set
$$U(vec{r}) = int_{gamma}(Pdx+Qdy+Rdz),. tag{1} $$
Now, what is left to show is that $dU$ is indeed $(P,Q,R)$. The relevant property thereby is that in (1) the value of $U$ is independent of he path choses (and only depends on the endpoints). This fact is due to Stokes theorem and the vanishing of the curl. The result then follows from the fundamental theorem of calculus.
$endgroup$
add a comment |
$begingroup$
In general we know that
$$dU = U_x dx + U_y dy + U_z dz $$
then you want to find $U$ such that
$$P = U_x, Q = U_y, Z = U_z.$$
Note that from the curl equation you get that $U_{xy} = U_{yx}$ and $U_{xz}=U_{zx}$ and $U_{yz}=U_{zy}.$ From the first equation you get that:
$$U = int P(x,y,z)dx + phi(y,z)$$
From the second equation you get that:
$$Q = U_y = frac{partial }{partial y}int Pdx + phi_y implies phi_y =Q - frac{partial }{partial y}int Pdx.$$
Since $phi_y$ is a function of $y$ and $z$ we have that $phi_{yx} = 0$ and thus
$$frac{partial }{partial x}left(Q -frac{partial }{partial y}int Pdxright)=0.$$
Thus
$$phi (y,z) = int Q(x,y,z)dy-int frac{partial }{partial t}left(int P(x,y,z)dxright)dt + h(z).$$
Thus our current expression for $U$ is
$$U = int P(x,y,z)dx + int Q(x,y,z)dy-int frac{partial }{partial t}left(int P(x,y,z)dxright)dt + h(z).$$
Now recall that
$$Z = U_z = frac{partial }{partial z}int P(x,y,z)dx + frac{partial }{partial z}int Q(x,y,z)dy-frac{partial }{partial z}int frac{partial }{partial t}left(int P(x,y,z)dxright)dt + h_z(z).$$
Thus
$$frac{dh}{dz} = Z - frac{partial }{partial z}int P(x,y,z)dx - frac{partial }{partial z}int Q(x,y,z)dy+frac{partial }{partial z}int frac{partial }{partial t}left(int P(x,y,z)dxright)dt.$$
And so
$$h(z) = int Z(x,y,z) dz - int frac{partial }{partial t}left(int P(x,y,z)dxright) dt - int frac{partial }{partial t}left(int Q(x,y,z)dyright)dt+
int frac{partial }{partial m}left[ intfrac{partial }{partial t}left(int P(x,y,z)dxright)dt right]dm.$$
Thus we have
$$U = int P(x,y,z)dx + int Q(x,y,z)dy-int frac{partial }{partial t}left(int P(x,y,z)dxright)dt + int Z(x,y,z) dz - int frac{partial }{partial t}left(int P(x,y,z)dxright) dt - int frac{partial }{partial t}left(int Q(x,y,z)dyright)dt+
int frac{partial }{partial m}left[ intfrac{partial }{partial t}left(int P(x,y,z)dxright)dt right]dm$$
$endgroup$
$begingroup$
Where do we use $curl(P,Q,R)=vec{0}$
$endgroup$
– Math geek
Jan 9 at 6:03
$begingroup$
$frac{partial }{partial x}left(Q -frac{partial }{partial y}int Pdxright)=Q_x-P_y.$ Since $Q_x = P_y$ you get that $frac{partial }{partial x}left(Q -frac{partial }{partial y}int Pdxright) = 0.$
$endgroup$
– model_checker
Jan 9 at 6:06
$begingroup$
$$phi_y =Q - frac{partial }{partial y}int Pdx.$$, When we integrate with respect to $y$. How do you get $$phi (y,z) = int Q(x,y,z)dy-int frac{partial }{partial t}left(int P(x,y,z)dxright)dt + h(z).$$? I am getting $$phi= int Q(x,y,z)dy-int P(x,y,z)dx+h(z)$$.
$endgroup$
– Math geek
Jan 9 at 6:17
$begingroup$
Why do you take $frac{partial}{partial t}$? please explain.
$endgroup$
– Math geek
Jan 9 at 12:05
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067085%2fif-vec-nabla-times-langle-p-q-q-rangle-vec0-iff-pdxqdyrdz-is-exac%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
This is quite standard. However, you need an additional assumption to prove your result. The easiest is to assume that the domain on which $dU$ is defined is a star domain.
You can then find $U$ by simply integrating $dU$ from $vec{r}_0= (x_0,y_0,z_0)$ to $vec{r}=(x,y,z)$ along the path $$vec{gamma(}t) = tvec{r}_0+ (1-t)vec{r},qquad tin[0,1].$$
In particular, we set
$$U(vec{r}) = int_{gamma}(Pdx+Qdy+Rdz),. tag{1} $$
Now, what is left to show is that $dU$ is indeed $(P,Q,R)$. The relevant property thereby is that in (1) the value of $U$ is independent of he path choses (and only depends on the endpoints). This fact is due to Stokes theorem and the vanishing of the curl. The result then follows from the fundamental theorem of calculus.
$endgroup$
add a comment |
$begingroup$
This is quite standard. However, you need an additional assumption to prove your result. The easiest is to assume that the domain on which $dU$ is defined is a star domain.
You can then find $U$ by simply integrating $dU$ from $vec{r}_0= (x_0,y_0,z_0)$ to $vec{r}=(x,y,z)$ along the path $$vec{gamma(}t) = tvec{r}_0+ (1-t)vec{r},qquad tin[0,1].$$
In particular, we set
$$U(vec{r}) = int_{gamma}(Pdx+Qdy+Rdz),. tag{1} $$
Now, what is left to show is that $dU$ is indeed $(P,Q,R)$. The relevant property thereby is that in (1) the value of $U$ is independent of he path choses (and only depends on the endpoints). This fact is due to Stokes theorem and the vanishing of the curl. The result then follows from the fundamental theorem of calculus.
$endgroup$
add a comment |
$begingroup$
This is quite standard. However, you need an additional assumption to prove your result. The easiest is to assume that the domain on which $dU$ is defined is a star domain.
You can then find $U$ by simply integrating $dU$ from $vec{r}_0= (x_0,y_0,z_0)$ to $vec{r}=(x,y,z)$ along the path $$vec{gamma(}t) = tvec{r}_0+ (1-t)vec{r},qquad tin[0,1].$$
In particular, we set
$$U(vec{r}) = int_{gamma}(Pdx+Qdy+Rdz),. tag{1} $$
Now, what is left to show is that $dU$ is indeed $(P,Q,R)$. The relevant property thereby is that in (1) the value of $U$ is independent of he path choses (and only depends on the endpoints). This fact is due to Stokes theorem and the vanishing of the curl. The result then follows from the fundamental theorem of calculus.
$endgroup$
This is quite standard. However, you need an additional assumption to prove your result. The easiest is to assume that the domain on which $dU$ is defined is a star domain.
You can then find $U$ by simply integrating $dU$ from $vec{r}_0= (x_0,y_0,z_0)$ to $vec{r}=(x,y,z)$ along the path $$vec{gamma(}t) = tvec{r}_0+ (1-t)vec{r},qquad tin[0,1].$$
In particular, we set
$$U(vec{r}) = int_{gamma}(Pdx+Qdy+Rdz),. tag{1} $$
Now, what is left to show is that $dU$ is indeed $(P,Q,R)$. The relevant property thereby is that in (1) the value of $U$ is independent of he path choses (and only depends on the endpoints). This fact is due to Stokes theorem and the vanishing of the curl. The result then follows from the fundamental theorem of calculus.
answered Jan 9 at 5:52
FabianFabian
20.1k3774
20.1k3774
add a comment |
add a comment |
$begingroup$
In general we know that
$$dU = U_x dx + U_y dy + U_z dz $$
then you want to find $U$ such that
$$P = U_x, Q = U_y, Z = U_z.$$
Note that from the curl equation you get that $U_{xy} = U_{yx}$ and $U_{xz}=U_{zx}$ and $U_{yz}=U_{zy}.$ From the first equation you get that:
$$U = int P(x,y,z)dx + phi(y,z)$$
From the second equation you get that:
$$Q = U_y = frac{partial }{partial y}int Pdx + phi_y implies phi_y =Q - frac{partial }{partial y}int Pdx.$$
Since $phi_y$ is a function of $y$ and $z$ we have that $phi_{yx} = 0$ and thus
$$frac{partial }{partial x}left(Q -frac{partial }{partial y}int Pdxright)=0.$$
Thus
$$phi (y,z) = int Q(x,y,z)dy-int frac{partial }{partial t}left(int P(x,y,z)dxright)dt + h(z).$$
Thus our current expression for $U$ is
$$U = int P(x,y,z)dx + int Q(x,y,z)dy-int frac{partial }{partial t}left(int P(x,y,z)dxright)dt + h(z).$$
Now recall that
$$Z = U_z = frac{partial }{partial z}int P(x,y,z)dx + frac{partial }{partial z}int Q(x,y,z)dy-frac{partial }{partial z}int frac{partial }{partial t}left(int P(x,y,z)dxright)dt + h_z(z).$$
Thus
$$frac{dh}{dz} = Z - frac{partial }{partial z}int P(x,y,z)dx - frac{partial }{partial z}int Q(x,y,z)dy+frac{partial }{partial z}int frac{partial }{partial t}left(int P(x,y,z)dxright)dt.$$
And so
$$h(z) = int Z(x,y,z) dz - int frac{partial }{partial t}left(int P(x,y,z)dxright) dt - int frac{partial }{partial t}left(int Q(x,y,z)dyright)dt+
int frac{partial }{partial m}left[ intfrac{partial }{partial t}left(int P(x,y,z)dxright)dt right]dm.$$
Thus we have
$$U = int P(x,y,z)dx + int Q(x,y,z)dy-int frac{partial }{partial t}left(int P(x,y,z)dxright)dt + int Z(x,y,z) dz - int frac{partial }{partial t}left(int P(x,y,z)dxright) dt - int frac{partial }{partial t}left(int Q(x,y,z)dyright)dt+
int frac{partial }{partial m}left[ intfrac{partial }{partial t}left(int P(x,y,z)dxright)dt right]dm$$
$endgroup$
$begingroup$
Where do we use $curl(P,Q,R)=vec{0}$
$endgroup$
– Math geek
Jan 9 at 6:03
$begingroup$
$frac{partial }{partial x}left(Q -frac{partial }{partial y}int Pdxright)=Q_x-P_y.$ Since $Q_x = P_y$ you get that $frac{partial }{partial x}left(Q -frac{partial }{partial y}int Pdxright) = 0.$
$endgroup$
– model_checker
Jan 9 at 6:06
$begingroup$
$$phi_y =Q - frac{partial }{partial y}int Pdx.$$, When we integrate with respect to $y$. How do you get $$phi (y,z) = int Q(x,y,z)dy-int frac{partial }{partial t}left(int P(x,y,z)dxright)dt + h(z).$$? I am getting $$phi= int Q(x,y,z)dy-int P(x,y,z)dx+h(z)$$.
$endgroup$
– Math geek
Jan 9 at 6:17
$begingroup$
Why do you take $frac{partial}{partial t}$? please explain.
$endgroup$
– Math geek
Jan 9 at 12:05
add a comment |
$begingroup$
In general we know that
$$dU = U_x dx + U_y dy + U_z dz $$
then you want to find $U$ such that
$$P = U_x, Q = U_y, Z = U_z.$$
Note that from the curl equation you get that $U_{xy} = U_{yx}$ and $U_{xz}=U_{zx}$ and $U_{yz}=U_{zy}.$ From the first equation you get that:
$$U = int P(x,y,z)dx + phi(y,z)$$
From the second equation you get that:
$$Q = U_y = frac{partial }{partial y}int Pdx + phi_y implies phi_y =Q - frac{partial }{partial y}int Pdx.$$
Since $phi_y$ is a function of $y$ and $z$ we have that $phi_{yx} = 0$ and thus
$$frac{partial }{partial x}left(Q -frac{partial }{partial y}int Pdxright)=0.$$
Thus
$$phi (y,z) = int Q(x,y,z)dy-int frac{partial }{partial t}left(int P(x,y,z)dxright)dt + h(z).$$
Thus our current expression for $U$ is
$$U = int P(x,y,z)dx + int Q(x,y,z)dy-int frac{partial }{partial t}left(int P(x,y,z)dxright)dt + h(z).$$
Now recall that
$$Z = U_z = frac{partial }{partial z}int P(x,y,z)dx + frac{partial }{partial z}int Q(x,y,z)dy-frac{partial }{partial z}int frac{partial }{partial t}left(int P(x,y,z)dxright)dt + h_z(z).$$
Thus
$$frac{dh}{dz} = Z - frac{partial }{partial z}int P(x,y,z)dx - frac{partial }{partial z}int Q(x,y,z)dy+frac{partial }{partial z}int frac{partial }{partial t}left(int P(x,y,z)dxright)dt.$$
And so
$$h(z) = int Z(x,y,z) dz - int frac{partial }{partial t}left(int P(x,y,z)dxright) dt - int frac{partial }{partial t}left(int Q(x,y,z)dyright)dt+
int frac{partial }{partial m}left[ intfrac{partial }{partial t}left(int P(x,y,z)dxright)dt right]dm.$$
Thus we have
$$U = int P(x,y,z)dx + int Q(x,y,z)dy-int frac{partial }{partial t}left(int P(x,y,z)dxright)dt + int Z(x,y,z) dz - int frac{partial }{partial t}left(int P(x,y,z)dxright) dt - int frac{partial }{partial t}left(int Q(x,y,z)dyright)dt+
int frac{partial }{partial m}left[ intfrac{partial }{partial t}left(int P(x,y,z)dxright)dt right]dm$$
$endgroup$
$begingroup$
Where do we use $curl(P,Q,R)=vec{0}$
$endgroup$
– Math geek
Jan 9 at 6:03
$begingroup$
$frac{partial }{partial x}left(Q -frac{partial }{partial y}int Pdxright)=Q_x-P_y.$ Since $Q_x = P_y$ you get that $frac{partial }{partial x}left(Q -frac{partial }{partial y}int Pdxright) = 0.$
$endgroup$
– model_checker
Jan 9 at 6:06
$begingroup$
$$phi_y =Q - frac{partial }{partial y}int Pdx.$$, When we integrate with respect to $y$. How do you get $$phi (y,z) = int Q(x,y,z)dy-int frac{partial }{partial t}left(int P(x,y,z)dxright)dt + h(z).$$? I am getting $$phi= int Q(x,y,z)dy-int P(x,y,z)dx+h(z)$$.
$endgroup$
– Math geek
Jan 9 at 6:17
$begingroup$
Why do you take $frac{partial}{partial t}$? please explain.
$endgroup$
– Math geek
Jan 9 at 12:05
add a comment |
$begingroup$
In general we know that
$$dU = U_x dx + U_y dy + U_z dz $$
then you want to find $U$ such that
$$P = U_x, Q = U_y, Z = U_z.$$
Note that from the curl equation you get that $U_{xy} = U_{yx}$ and $U_{xz}=U_{zx}$ and $U_{yz}=U_{zy}.$ From the first equation you get that:
$$U = int P(x,y,z)dx + phi(y,z)$$
From the second equation you get that:
$$Q = U_y = frac{partial }{partial y}int Pdx + phi_y implies phi_y =Q - frac{partial }{partial y}int Pdx.$$
Since $phi_y$ is a function of $y$ and $z$ we have that $phi_{yx} = 0$ and thus
$$frac{partial }{partial x}left(Q -frac{partial }{partial y}int Pdxright)=0.$$
Thus
$$phi (y,z) = int Q(x,y,z)dy-int frac{partial }{partial t}left(int P(x,y,z)dxright)dt + h(z).$$
Thus our current expression for $U$ is
$$U = int P(x,y,z)dx + int Q(x,y,z)dy-int frac{partial }{partial t}left(int P(x,y,z)dxright)dt + h(z).$$
Now recall that
$$Z = U_z = frac{partial }{partial z}int P(x,y,z)dx + frac{partial }{partial z}int Q(x,y,z)dy-frac{partial }{partial z}int frac{partial }{partial t}left(int P(x,y,z)dxright)dt + h_z(z).$$
Thus
$$frac{dh}{dz} = Z - frac{partial }{partial z}int P(x,y,z)dx - frac{partial }{partial z}int Q(x,y,z)dy+frac{partial }{partial z}int frac{partial }{partial t}left(int P(x,y,z)dxright)dt.$$
And so
$$h(z) = int Z(x,y,z) dz - int frac{partial }{partial t}left(int P(x,y,z)dxright) dt - int frac{partial }{partial t}left(int Q(x,y,z)dyright)dt+
int frac{partial }{partial m}left[ intfrac{partial }{partial t}left(int P(x,y,z)dxright)dt right]dm.$$
Thus we have
$$U = int P(x,y,z)dx + int Q(x,y,z)dy-int frac{partial }{partial t}left(int P(x,y,z)dxright)dt + int Z(x,y,z) dz - int frac{partial }{partial t}left(int P(x,y,z)dxright) dt - int frac{partial }{partial t}left(int Q(x,y,z)dyright)dt+
int frac{partial }{partial m}left[ intfrac{partial }{partial t}left(int P(x,y,z)dxright)dt right]dm$$
$endgroup$
In general we know that
$$dU = U_x dx + U_y dy + U_z dz $$
then you want to find $U$ such that
$$P = U_x, Q = U_y, Z = U_z.$$
Note that from the curl equation you get that $U_{xy} = U_{yx}$ and $U_{xz}=U_{zx}$ and $U_{yz}=U_{zy}.$ From the first equation you get that:
$$U = int P(x,y,z)dx + phi(y,z)$$
From the second equation you get that:
$$Q = U_y = frac{partial }{partial y}int Pdx + phi_y implies phi_y =Q - frac{partial }{partial y}int Pdx.$$
Since $phi_y$ is a function of $y$ and $z$ we have that $phi_{yx} = 0$ and thus
$$frac{partial }{partial x}left(Q -frac{partial }{partial y}int Pdxright)=0.$$
Thus
$$phi (y,z) = int Q(x,y,z)dy-int frac{partial }{partial t}left(int P(x,y,z)dxright)dt + h(z).$$
Thus our current expression for $U$ is
$$U = int P(x,y,z)dx + int Q(x,y,z)dy-int frac{partial }{partial t}left(int P(x,y,z)dxright)dt + h(z).$$
Now recall that
$$Z = U_z = frac{partial }{partial z}int P(x,y,z)dx + frac{partial }{partial z}int Q(x,y,z)dy-frac{partial }{partial z}int frac{partial }{partial t}left(int P(x,y,z)dxright)dt + h_z(z).$$
Thus
$$frac{dh}{dz} = Z - frac{partial }{partial z}int P(x,y,z)dx - frac{partial }{partial z}int Q(x,y,z)dy+frac{partial }{partial z}int frac{partial }{partial t}left(int P(x,y,z)dxright)dt.$$
And so
$$h(z) = int Z(x,y,z) dz - int frac{partial }{partial t}left(int P(x,y,z)dxright) dt - int frac{partial }{partial t}left(int Q(x,y,z)dyright)dt+
int frac{partial }{partial m}left[ intfrac{partial }{partial t}left(int P(x,y,z)dxright)dt right]dm.$$
Thus we have
$$U = int P(x,y,z)dx + int Q(x,y,z)dy-int frac{partial }{partial t}left(int P(x,y,z)dxright)dt + int Z(x,y,z) dz - int frac{partial }{partial t}left(int P(x,y,z)dxright) dt - int frac{partial }{partial t}left(int Q(x,y,z)dyright)dt+
int frac{partial }{partial m}left[ intfrac{partial }{partial t}left(int P(x,y,z)dxright)dt right]dm$$
answered Jan 9 at 5:52
model_checkermodel_checker
4,45521931
4,45521931
$begingroup$
Where do we use $curl(P,Q,R)=vec{0}$
$endgroup$
– Math geek
Jan 9 at 6:03
$begingroup$
$frac{partial }{partial x}left(Q -frac{partial }{partial y}int Pdxright)=Q_x-P_y.$ Since $Q_x = P_y$ you get that $frac{partial }{partial x}left(Q -frac{partial }{partial y}int Pdxright) = 0.$
$endgroup$
– model_checker
Jan 9 at 6:06
$begingroup$
$$phi_y =Q - frac{partial }{partial y}int Pdx.$$, When we integrate with respect to $y$. How do you get $$phi (y,z) = int Q(x,y,z)dy-int frac{partial }{partial t}left(int P(x,y,z)dxright)dt + h(z).$$? I am getting $$phi= int Q(x,y,z)dy-int P(x,y,z)dx+h(z)$$.
$endgroup$
– Math geek
Jan 9 at 6:17
$begingroup$
Why do you take $frac{partial}{partial t}$? please explain.
$endgroup$
– Math geek
Jan 9 at 12:05
add a comment |
$begingroup$
Where do we use $curl(P,Q,R)=vec{0}$
$endgroup$
– Math geek
Jan 9 at 6:03
$begingroup$
$frac{partial }{partial x}left(Q -frac{partial }{partial y}int Pdxright)=Q_x-P_y.$ Since $Q_x = P_y$ you get that $frac{partial }{partial x}left(Q -frac{partial }{partial y}int Pdxright) = 0.$
$endgroup$
– model_checker
Jan 9 at 6:06
$begingroup$
$$phi_y =Q - frac{partial }{partial y}int Pdx.$$, When we integrate with respect to $y$. How do you get $$phi (y,z) = int Q(x,y,z)dy-int frac{partial }{partial t}left(int P(x,y,z)dxright)dt + h(z).$$? I am getting $$phi= int Q(x,y,z)dy-int P(x,y,z)dx+h(z)$$.
$endgroup$
– Math geek
Jan 9 at 6:17
$begingroup$
Why do you take $frac{partial}{partial t}$? please explain.
$endgroup$
– Math geek
Jan 9 at 12:05
$begingroup$
Where do we use $curl(P,Q,R)=vec{0}$
$endgroup$
– Math geek
Jan 9 at 6:03
$begingroup$
Where do we use $curl(P,Q,R)=vec{0}$
$endgroup$
– Math geek
Jan 9 at 6:03
$begingroup$
$frac{partial }{partial x}left(Q -frac{partial }{partial y}int Pdxright)=Q_x-P_y.$ Since $Q_x = P_y$ you get that $frac{partial }{partial x}left(Q -frac{partial }{partial y}int Pdxright) = 0.$
$endgroup$
– model_checker
Jan 9 at 6:06
$begingroup$
$frac{partial }{partial x}left(Q -frac{partial }{partial y}int Pdxright)=Q_x-P_y.$ Since $Q_x = P_y$ you get that $frac{partial }{partial x}left(Q -frac{partial }{partial y}int Pdxright) = 0.$
$endgroup$
– model_checker
Jan 9 at 6:06
$begingroup$
$$phi_y =Q - frac{partial }{partial y}int Pdx.$$, When we integrate with respect to $y$. How do you get $$phi (y,z) = int Q(x,y,z)dy-int frac{partial }{partial t}left(int P(x,y,z)dxright)dt + h(z).$$? I am getting $$phi= int Q(x,y,z)dy-int P(x,y,z)dx+h(z)$$.
$endgroup$
– Math geek
Jan 9 at 6:17
$begingroup$
$$phi_y =Q - frac{partial }{partial y}int Pdx.$$, When we integrate with respect to $y$. How do you get $$phi (y,z) = int Q(x,y,z)dy-int frac{partial }{partial t}left(int P(x,y,z)dxright)dt + h(z).$$? I am getting $$phi= int Q(x,y,z)dy-int P(x,y,z)dx+h(z)$$.
$endgroup$
– Math geek
Jan 9 at 6:17
$begingroup$
Why do you take $frac{partial}{partial t}$? please explain.
$endgroup$
– Math geek
Jan 9 at 12:05
$begingroup$
Why do you take $frac{partial}{partial t}$? please explain.
$endgroup$
– Math geek
Jan 9 at 12:05
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067085%2fif-vec-nabla-times-langle-p-q-q-rangle-vec0-iff-pdxqdyrdz-is-exac%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown