Laplace transform of $frac{sin^2(t)}{t}$
$begingroup$
Because : $$mathscr Lleft(frac{f(t)}{t}right) = int_s^∞ F(s) ds$$
and $$mathscr Lleft(sin^2(t)right) = frac{2}{sleft(s^2 + 4right)}$$
then $$∫ frac{2}{sleft(s^2+4right)} ds = frac{1}{2}ln|s|-frac{1}{4}ln|s^2 + 4|$$
What should I do next...?
the answer that textbook gives me is $$frac{1}{4}lnleft(frac{s^2 + 4}{s^2}right)$$
laplace-transform
$endgroup$
add a comment |
$begingroup$
Because : $$mathscr Lleft(frac{f(t)}{t}right) = int_s^∞ F(s) ds$$
and $$mathscr Lleft(sin^2(t)right) = frac{2}{sleft(s^2 + 4right)}$$
then $$∫ frac{2}{sleft(s^2+4right)} ds = frac{1}{2}ln|s|-frac{1}{4}ln|s^2 + 4|$$
What should I do next...?
the answer that textbook gives me is $$frac{1}{4}lnleft(frac{s^2 + 4}{s^2}right)$$
laplace-transform
$endgroup$
2
$begingroup$
Please see math.meta.stackexchange.com/questions/5020
$endgroup$
– Lord Shark the Unknown
Dec 23 '18 at 7:45
add a comment |
$begingroup$
Because : $$mathscr Lleft(frac{f(t)}{t}right) = int_s^∞ F(s) ds$$
and $$mathscr Lleft(sin^2(t)right) = frac{2}{sleft(s^2 + 4right)}$$
then $$∫ frac{2}{sleft(s^2+4right)} ds = frac{1}{2}ln|s|-frac{1}{4}ln|s^2 + 4|$$
What should I do next...?
the answer that textbook gives me is $$frac{1}{4}lnleft(frac{s^2 + 4}{s^2}right)$$
laplace-transform
$endgroup$
Because : $$mathscr Lleft(frac{f(t)}{t}right) = int_s^∞ F(s) ds$$
and $$mathscr Lleft(sin^2(t)right) = frac{2}{sleft(s^2 + 4right)}$$
then $$∫ frac{2}{sleft(s^2+4right)} ds = frac{1}{2}ln|s|-frac{1}{4}ln|s^2 + 4|$$
What should I do next...?
the answer that textbook gives me is $$frac{1}{4}lnleft(frac{s^2 + 4}{s^2}right)$$
laplace-transform
laplace-transform
edited Dec 23 '18 at 8:50
DavidG
2,5061726
2,5061726
asked Dec 23 '18 at 7:43
FOMTFOMT
133
133
2
$begingroup$
Please see math.meta.stackexchange.com/questions/5020
$endgroup$
– Lord Shark the Unknown
Dec 23 '18 at 7:45
add a comment |
2
$begingroup$
Please see math.meta.stackexchange.com/questions/5020
$endgroup$
– Lord Shark the Unknown
Dec 23 '18 at 7:45
2
2
$begingroup$
Please see math.meta.stackexchange.com/questions/5020
$endgroup$
– Lord Shark the Unknown
Dec 23 '18 at 7:45
$begingroup$
Please see math.meta.stackexchange.com/questions/5020
$endgroup$
– Lord Shark the Unknown
Dec 23 '18 at 7:45
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Using the double angle identity:
begin{equation}
sin^2(t) = frac{1 - cos(2t)}{2}
end{equation}
Thus,
begin{equation}
mathscr{L}left[sin^2(t)right] = frac{1}{2s} - frac{s}{2left(s^2 + 4right)}
end{equation}
We now employ the property of Laplace Transforms:
begin{equation}
mathscr{L}left[ frac{f(t)}{t} right] = int_{s}^{infty}mathscr{L}left[ f(t) right]_u:ds
end{equation}
Thus,
begin{align}
mathscr{L}left[ frac{sin^2(t)}{t} right] &= int_{s}^{infty}left[ frac{1}{2u} - frac{u}{2left(u^2 + 4right)} right]:du = left[ frac{1}{2}ln(u) - frac{1}{4}lnleft(u^2 + 4right)right]_{s}^{infty}\
& = left[frac{1}{4}lnleft(frac{u^2}{u^2 + 4} right) right]_{s}^{infty} = frac{1}{4}left[0 - lnleft(frac{s^2}{s^2 + 4} right) right] = - frac{1}{4}lnleft(frac{s^2}{s^2 + 4}right)\
& = frac{1}{4}lnleft(frac{s^2 + 4}{s^2}right)
end{align}
$endgroup$
$begingroup$
If you're looking for other methods, I recommend taking away the 'Answered' status on my comment (many ignore answered questions). Up to you of course! Merry xmas!
$endgroup$
– DavidG
Dec 23 '18 at 10:17
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050145%2flaplace-transform-of-frac-sin2tt%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Using the double angle identity:
begin{equation}
sin^2(t) = frac{1 - cos(2t)}{2}
end{equation}
Thus,
begin{equation}
mathscr{L}left[sin^2(t)right] = frac{1}{2s} - frac{s}{2left(s^2 + 4right)}
end{equation}
We now employ the property of Laplace Transforms:
begin{equation}
mathscr{L}left[ frac{f(t)}{t} right] = int_{s}^{infty}mathscr{L}left[ f(t) right]_u:ds
end{equation}
Thus,
begin{align}
mathscr{L}left[ frac{sin^2(t)}{t} right] &= int_{s}^{infty}left[ frac{1}{2u} - frac{u}{2left(u^2 + 4right)} right]:du = left[ frac{1}{2}ln(u) - frac{1}{4}lnleft(u^2 + 4right)right]_{s}^{infty}\
& = left[frac{1}{4}lnleft(frac{u^2}{u^2 + 4} right) right]_{s}^{infty} = frac{1}{4}left[0 - lnleft(frac{s^2}{s^2 + 4} right) right] = - frac{1}{4}lnleft(frac{s^2}{s^2 + 4}right)\
& = frac{1}{4}lnleft(frac{s^2 + 4}{s^2}right)
end{align}
$endgroup$
$begingroup$
If you're looking for other methods, I recommend taking away the 'Answered' status on my comment (many ignore answered questions). Up to you of course! Merry xmas!
$endgroup$
– DavidG
Dec 23 '18 at 10:17
add a comment |
$begingroup$
Using the double angle identity:
begin{equation}
sin^2(t) = frac{1 - cos(2t)}{2}
end{equation}
Thus,
begin{equation}
mathscr{L}left[sin^2(t)right] = frac{1}{2s} - frac{s}{2left(s^2 + 4right)}
end{equation}
We now employ the property of Laplace Transforms:
begin{equation}
mathscr{L}left[ frac{f(t)}{t} right] = int_{s}^{infty}mathscr{L}left[ f(t) right]_u:ds
end{equation}
Thus,
begin{align}
mathscr{L}left[ frac{sin^2(t)}{t} right] &= int_{s}^{infty}left[ frac{1}{2u} - frac{u}{2left(u^2 + 4right)} right]:du = left[ frac{1}{2}ln(u) - frac{1}{4}lnleft(u^2 + 4right)right]_{s}^{infty}\
& = left[frac{1}{4}lnleft(frac{u^2}{u^2 + 4} right) right]_{s}^{infty} = frac{1}{4}left[0 - lnleft(frac{s^2}{s^2 + 4} right) right] = - frac{1}{4}lnleft(frac{s^2}{s^2 + 4}right)\
& = frac{1}{4}lnleft(frac{s^2 + 4}{s^2}right)
end{align}
$endgroup$
$begingroup$
If you're looking for other methods, I recommend taking away the 'Answered' status on my comment (many ignore answered questions). Up to you of course! Merry xmas!
$endgroup$
– DavidG
Dec 23 '18 at 10:17
add a comment |
$begingroup$
Using the double angle identity:
begin{equation}
sin^2(t) = frac{1 - cos(2t)}{2}
end{equation}
Thus,
begin{equation}
mathscr{L}left[sin^2(t)right] = frac{1}{2s} - frac{s}{2left(s^2 + 4right)}
end{equation}
We now employ the property of Laplace Transforms:
begin{equation}
mathscr{L}left[ frac{f(t)}{t} right] = int_{s}^{infty}mathscr{L}left[ f(t) right]_u:ds
end{equation}
Thus,
begin{align}
mathscr{L}left[ frac{sin^2(t)}{t} right] &= int_{s}^{infty}left[ frac{1}{2u} - frac{u}{2left(u^2 + 4right)} right]:du = left[ frac{1}{2}ln(u) - frac{1}{4}lnleft(u^2 + 4right)right]_{s}^{infty}\
& = left[frac{1}{4}lnleft(frac{u^2}{u^2 + 4} right) right]_{s}^{infty} = frac{1}{4}left[0 - lnleft(frac{s^2}{s^2 + 4} right) right] = - frac{1}{4}lnleft(frac{s^2}{s^2 + 4}right)\
& = frac{1}{4}lnleft(frac{s^2 + 4}{s^2}right)
end{align}
$endgroup$
Using the double angle identity:
begin{equation}
sin^2(t) = frac{1 - cos(2t)}{2}
end{equation}
Thus,
begin{equation}
mathscr{L}left[sin^2(t)right] = frac{1}{2s} - frac{s}{2left(s^2 + 4right)}
end{equation}
We now employ the property of Laplace Transforms:
begin{equation}
mathscr{L}left[ frac{f(t)}{t} right] = int_{s}^{infty}mathscr{L}left[ f(t) right]_u:ds
end{equation}
Thus,
begin{align}
mathscr{L}left[ frac{sin^2(t)}{t} right] &= int_{s}^{infty}left[ frac{1}{2u} - frac{u}{2left(u^2 + 4right)} right]:du = left[ frac{1}{2}ln(u) - frac{1}{4}lnleft(u^2 + 4right)right]_{s}^{infty}\
& = left[frac{1}{4}lnleft(frac{u^2}{u^2 + 4} right) right]_{s}^{infty} = frac{1}{4}left[0 - lnleft(frac{s^2}{s^2 + 4} right) right] = - frac{1}{4}lnleft(frac{s^2}{s^2 + 4}right)\
& = frac{1}{4}lnleft(frac{s^2 + 4}{s^2}right)
end{align}
answered Dec 23 '18 at 8:07
DavidGDavidG
2,5061726
2,5061726
$begingroup$
If you're looking for other methods, I recommend taking away the 'Answered' status on my comment (many ignore answered questions). Up to you of course! Merry xmas!
$endgroup$
– DavidG
Dec 23 '18 at 10:17
add a comment |
$begingroup$
If you're looking for other methods, I recommend taking away the 'Answered' status on my comment (many ignore answered questions). Up to you of course! Merry xmas!
$endgroup$
– DavidG
Dec 23 '18 at 10:17
$begingroup$
If you're looking for other methods, I recommend taking away the 'Answered' status on my comment (many ignore answered questions). Up to you of course! Merry xmas!
$endgroup$
– DavidG
Dec 23 '18 at 10:17
$begingroup$
If you're looking for other methods, I recommend taking away the 'Answered' status on my comment (many ignore answered questions). Up to you of course! Merry xmas!
$endgroup$
– DavidG
Dec 23 '18 at 10:17
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050145%2flaplace-transform-of-frac-sin2tt%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
Please see math.meta.stackexchange.com/questions/5020
$endgroup$
– Lord Shark the Unknown
Dec 23 '18 at 7:45