Is the sequence , 0,1/2,0,1/3,2/3,0,1/4,2/4,3/4,0… equidistributed?
$begingroup$
Is the sequence ,
$$0,1/2,0,1/3,2/3,0,1/4,2/4,3/4,0..... $$
equidistributed ?
A sequence ${xi_n}$ is equidistributed in $[0,1),$ that is if
$$lim_{Nrightarrowinfty}frac{Card{1leq nleq N|xi_nin(a,b)}}{N}=b-a$$
Well ,the sequence write in a formula is :
$$xi_n=0,;; whenever; n=k(k-1)/2+1$$
$$xi_n=frac{k}{m},;;whenever;n=frac{(m-1)(m–2)}{2}+k$$
$forall N,(a,b)$,firt of all 0 is in the $(a,b)$, so
$$Card{k|frac{k(k-1)}{2}+1leq N}=O(sqrt{N})$$
Next we let
$$frac{(m-1)(m–2)}{2}+kleq N$$
and
$$amleq kleq bm$$
Just like a nonlinear arrangement problem, suppose the $m$ is the $x$-axis, the $k$ is the $y$-axis, the question now , is to estimate the integer points of this area .
I don't know how to do next
number-theory
$endgroup$
add a comment |
$begingroup$
Is the sequence ,
$$0,1/2,0,1/3,2/3,0,1/4,2/4,3/4,0..... $$
equidistributed ?
A sequence ${xi_n}$ is equidistributed in $[0,1),$ that is if
$$lim_{Nrightarrowinfty}frac{Card{1leq nleq N|xi_nin(a,b)}}{N}=b-a$$
Well ,the sequence write in a formula is :
$$xi_n=0,;; whenever; n=k(k-1)/2+1$$
$$xi_n=frac{k}{m},;;whenever;n=frac{(m-1)(m–2)}{2}+k$$
$forall N,(a,b)$,firt of all 0 is in the $(a,b)$, so
$$Card{k|frac{k(k-1)}{2}+1leq N}=O(sqrt{N})$$
Next we let
$$frac{(m-1)(m–2)}{2}+kleq N$$
and
$$amleq kleq bm$$
Just like a nonlinear arrangement problem, suppose the $m$ is the $x$-axis, the $k$ is the $y$-axis, the question now , is to estimate the integer points of this area .
I don't know how to do next
number-theory
$endgroup$
2
$begingroup$
Can you show us what progress you've made?
$endgroup$
– zoidberg
Dec 23 '18 at 7:27
$begingroup$
@norfair of course, I show it in the answer ..
$endgroup$
– Alexander Lau
Dec 23 '18 at 7:47
add a comment |
$begingroup$
Is the sequence ,
$$0,1/2,0,1/3,2/3,0,1/4,2/4,3/4,0..... $$
equidistributed ?
A sequence ${xi_n}$ is equidistributed in $[0,1),$ that is if
$$lim_{Nrightarrowinfty}frac{Card{1leq nleq N|xi_nin(a,b)}}{N}=b-a$$
Well ,the sequence write in a formula is :
$$xi_n=0,;; whenever; n=k(k-1)/2+1$$
$$xi_n=frac{k}{m},;;whenever;n=frac{(m-1)(m–2)}{2}+k$$
$forall N,(a,b)$,firt of all 0 is in the $(a,b)$, so
$$Card{k|frac{k(k-1)}{2}+1leq N}=O(sqrt{N})$$
Next we let
$$frac{(m-1)(m–2)}{2}+kleq N$$
and
$$amleq kleq bm$$
Just like a nonlinear arrangement problem, suppose the $m$ is the $x$-axis, the $k$ is the $y$-axis, the question now , is to estimate the integer points of this area .
I don't know how to do next
number-theory
$endgroup$
Is the sequence ,
$$0,1/2,0,1/3,2/3,0,1/4,2/4,3/4,0..... $$
equidistributed ?
A sequence ${xi_n}$ is equidistributed in $[0,1),$ that is if
$$lim_{Nrightarrowinfty}frac{Card{1leq nleq N|xi_nin(a,b)}}{N}=b-a$$
Well ,the sequence write in a formula is :
$$xi_n=0,;; whenever; n=k(k-1)/2+1$$
$$xi_n=frac{k}{m},;;whenever;n=frac{(m-1)(m–2)}{2}+k$$
$forall N,(a,b)$,firt of all 0 is in the $(a,b)$, so
$$Card{k|frac{k(k-1)}{2}+1leq N}=O(sqrt{N})$$
Next we let
$$frac{(m-1)(m–2)}{2}+kleq N$$
and
$$amleq kleq bm$$
Just like a nonlinear arrangement problem, suppose the $m$ is the $x$-axis, the $k$ is the $y$-axis, the question now , is to estimate the integer points of this area .
I don't know how to do next
number-theory
number-theory
edited Dec 23 '18 at 8:38
Alexander Lau
asked Dec 23 '18 at 6:57
Alexander LauAlexander Lau
1128
1128
2
$begingroup$
Can you show us what progress you've made?
$endgroup$
– zoidberg
Dec 23 '18 at 7:27
$begingroup$
@norfair of course, I show it in the answer ..
$endgroup$
– Alexander Lau
Dec 23 '18 at 7:47
add a comment |
2
$begingroup$
Can you show us what progress you've made?
$endgroup$
– zoidberg
Dec 23 '18 at 7:27
$begingroup$
@norfair of course, I show it in the answer ..
$endgroup$
– Alexander Lau
Dec 23 '18 at 7:47
2
2
$begingroup$
Can you show us what progress you've made?
$endgroup$
– zoidberg
Dec 23 '18 at 7:27
$begingroup$
Can you show us what progress you've made?
$endgroup$
– zoidberg
Dec 23 '18 at 7:27
$begingroup$
@norfair of course, I show it in the answer ..
$endgroup$
– Alexander Lau
Dec 23 '18 at 7:47
$begingroup$
@norfair of course, I show it in the answer ..
$endgroup$
– Alexander Lau
Dec 23 '18 at 7:47
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Well ,the sequence write in a formula is :
$$xi_n=0,;; whenever; n=k(k-1)/2+1$$
$$xi_n=frac{k}{m},;;whenever;n=frac{(m-1)(m–2)}{2}+k$$
$forall N,(a,b)$,firt of all 0 is in the $(a,b)$, so
$$Card{k|frac{k(k-1)}{2}+1leq N}=O(sqrt{N})$$
Next we let
$$frac{(m-1)(m–2)}{2}+kleq N$$
and
$$amleq kleq bm$$
Just like a nonlinear arrangement problem, suppose the $m$ is the $x$-axis, the $k$ is the $y$-axis, the question now , is to estimate the integer points of this area .
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050120%2fis-the-sequence-0-1-2-0-1-3-2-3-0-1-4-2-4-3-4-0-equidistributed%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Well ,the sequence write in a formula is :
$$xi_n=0,;; whenever; n=k(k-1)/2+1$$
$$xi_n=frac{k}{m},;;whenever;n=frac{(m-1)(m–2)}{2}+k$$
$forall N,(a,b)$,firt of all 0 is in the $(a,b)$, so
$$Card{k|frac{k(k-1)}{2}+1leq N}=O(sqrt{N})$$
Next we let
$$frac{(m-1)(m–2)}{2}+kleq N$$
and
$$amleq kleq bm$$
Just like a nonlinear arrangement problem, suppose the $m$ is the $x$-axis, the $k$ is the $y$-axis, the question now , is to estimate the integer points of this area .
$endgroup$
add a comment |
$begingroup$
Well ,the sequence write in a formula is :
$$xi_n=0,;; whenever; n=k(k-1)/2+1$$
$$xi_n=frac{k}{m},;;whenever;n=frac{(m-1)(m–2)}{2}+k$$
$forall N,(a,b)$,firt of all 0 is in the $(a,b)$, so
$$Card{k|frac{k(k-1)}{2}+1leq N}=O(sqrt{N})$$
Next we let
$$frac{(m-1)(m–2)}{2}+kleq N$$
and
$$amleq kleq bm$$
Just like a nonlinear arrangement problem, suppose the $m$ is the $x$-axis, the $k$ is the $y$-axis, the question now , is to estimate the integer points of this area .
$endgroup$
add a comment |
$begingroup$
Well ,the sequence write in a formula is :
$$xi_n=0,;; whenever; n=k(k-1)/2+1$$
$$xi_n=frac{k}{m},;;whenever;n=frac{(m-1)(m–2)}{2}+k$$
$forall N,(a,b)$,firt of all 0 is in the $(a,b)$, so
$$Card{k|frac{k(k-1)}{2}+1leq N}=O(sqrt{N})$$
Next we let
$$frac{(m-1)(m–2)}{2}+kleq N$$
and
$$amleq kleq bm$$
Just like a nonlinear arrangement problem, suppose the $m$ is the $x$-axis, the $k$ is the $y$-axis, the question now , is to estimate the integer points of this area .
$endgroup$
Well ,the sequence write in a formula is :
$$xi_n=0,;; whenever; n=k(k-1)/2+1$$
$$xi_n=frac{k}{m},;;whenever;n=frac{(m-1)(m–2)}{2}+k$$
$forall N,(a,b)$,firt of all 0 is in the $(a,b)$, so
$$Card{k|frac{k(k-1)}{2}+1leq N}=O(sqrt{N})$$
Next we let
$$frac{(m-1)(m–2)}{2}+kleq N$$
and
$$amleq kleq bm$$
Just like a nonlinear arrangement problem, suppose the $m$ is the $x$-axis, the $k$ is the $y$-axis, the question now , is to estimate the integer points of this area .
answered Dec 23 '18 at 7:46
Alexander LauAlexander Lau
1128
1128
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050120%2fis-the-sequence-0-1-2-0-1-3-2-3-0-1-4-2-4-3-4-0-equidistributed%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
Can you show us what progress you've made?
$endgroup$
– zoidberg
Dec 23 '18 at 7:27
$begingroup$
@norfair of course, I show it in the answer ..
$endgroup$
– Alexander Lau
Dec 23 '18 at 7:47