Why does $log|(x,y) - (ξ,η)| $ satisfy the laplace equation for all $(x,y) ne (ξ,η)$
$begingroup$
Why does $G = log|(x,y) - (ξ,η)| $ satisfy the laplace equation for all $(x,y) ne (ξ,η)$
Could someone explain why this is true?
I thought $frac{partial G}{partial x} = frac{1}{(x,y) - (ξ,η)}$ and $frac{partial G}{partial y} = frac{1}{(x,y) - (ξ,η)}$
and so
$frac{partial^2 G}{partial x^2}+ frac{partial^2 G}{partial y^2} = frac{-1}{[(x,y) - (ξ,η)]^2} + frac{-1}{([(x,y) - (ξ,η)]^2}$
pde partial-derivative
$endgroup$
add a comment |
$begingroup$
Why does $G = log|(x,y) - (ξ,η)| $ satisfy the laplace equation for all $(x,y) ne (ξ,η)$
Could someone explain why this is true?
I thought $frac{partial G}{partial x} = frac{1}{(x,y) - (ξ,η)}$ and $frac{partial G}{partial y} = frac{1}{(x,y) - (ξ,η)}$
and so
$frac{partial^2 G}{partial x^2}+ frac{partial^2 G}{partial y^2} = frac{-1}{[(x,y) - (ξ,η)]^2} + frac{-1}{([(x,y) - (ξ,η)]^2}$
pde partial-derivative
$endgroup$
add a comment |
$begingroup$
Why does $G = log|(x,y) - (ξ,η)| $ satisfy the laplace equation for all $(x,y) ne (ξ,η)$
Could someone explain why this is true?
I thought $frac{partial G}{partial x} = frac{1}{(x,y) - (ξ,η)}$ and $frac{partial G}{partial y} = frac{1}{(x,y) - (ξ,η)}$
and so
$frac{partial^2 G}{partial x^2}+ frac{partial^2 G}{partial y^2} = frac{-1}{[(x,y) - (ξ,η)]^2} + frac{-1}{([(x,y) - (ξ,η)]^2}$
pde partial-derivative
$endgroup$
Why does $G = log|(x,y) - (ξ,η)| $ satisfy the laplace equation for all $(x,y) ne (ξ,η)$
Could someone explain why this is true?
I thought $frac{partial G}{partial x} = frac{1}{(x,y) - (ξ,η)}$ and $frac{partial G}{partial y} = frac{1}{(x,y) - (ξ,η)}$
and so
$frac{partial^2 G}{partial x^2}+ frac{partial^2 G}{partial y^2} = frac{-1}{[(x,y) - (ξ,η)]^2} + frac{-1}{([(x,y) - (ξ,η)]^2}$
pde partial-derivative
pde partial-derivative
edited Dec 18 '18 at 13:56
Harry49
7,07131239
7,07131239
asked Dec 14 '18 at 17:03
pablo_mathscobarpablo_mathscobar
996
996
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Your calculation of the partial derivatives is wrong. The expression $(x,y) - (xi,eta)$ is a vector and doesn't make sense in a denominator. Instead you should write
$$G(x,y) = log sqrt{(x-xi)^2 + (y - eta)^2} = frac 12 log left( (x-xi)^2 + (y - eta)^2right)$$ and work from there. For instance,
$$frac{partial G}{partial x}(x,y) = frac{x-xi}{(x-xi)^2 + (y - eta)^2}$$ so that
$$ frac{partial^2 G}{partial x ^2}(x,y) = frac{ -(x-xi)^2 + (y-eta)^2}{(x-xi)^2 + (y - eta)^2}.$$
$endgroup$
1
$begingroup$
Cheers mate, i was confused about the notation
$endgroup$
– pablo_mathscobar
Dec 14 '18 at 17:59
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3039641%2fwhy-does-logx-y-%25ce%25be-%25ce%25b7-satisfy-the-laplace-equation-for-all-x-y-ne%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Your calculation of the partial derivatives is wrong. The expression $(x,y) - (xi,eta)$ is a vector and doesn't make sense in a denominator. Instead you should write
$$G(x,y) = log sqrt{(x-xi)^2 + (y - eta)^2} = frac 12 log left( (x-xi)^2 + (y - eta)^2right)$$ and work from there. For instance,
$$frac{partial G}{partial x}(x,y) = frac{x-xi}{(x-xi)^2 + (y - eta)^2}$$ so that
$$ frac{partial^2 G}{partial x ^2}(x,y) = frac{ -(x-xi)^2 + (y-eta)^2}{(x-xi)^2 + (y - eta)^2}.$$
$endgroup$
1
$begingroup$
Cheers mate, i was confused about the notation
$endgroup$
– pablo_mathscobar
Dec 14 '18 at 17:59
add a comment |
$begingroup$
Your calculation of the partial derivatives is wrong. The expression $(x,y) - (xi,eta)$ is a vector and doesn't make sense in a denominator. Instead you should write
$$G(x,y) = log sqrt{(x-xi)^2 + (y - eta)^2} = frac 12 log left( (x-xi)^2 + (y - eta)^2right)$$ and work from there. For instance,
$$frac{partial G}{partial x}(x,y) = frac{x-xi}{(x-xi)^2 + (y - eta)^2}$$ so that
$$ frac{partial^2 G}{partial x ^2}(x,y) = frac{ -(x-xi)^2 + (y-eta)^2}{(x-xi)^2 + (y - eta)^2}.$$
$endgroup$
1
$begingroup$
Cheers mate, i was confused about the notation
$endgroup$
– pablo_mathscobar
Dec 14 '18 at 17:59
add a comment |
$begingroup$
Your calculation of the partial derivatives is wrong. The expression $(x,y) - (xi,eta)$ is a vector and doesn't make sense in a denominator. Instead you should write
$$G(x,y) = log sqrt{(x-xi)^2 + (y - eta)^2} = frac 12 log left( (x-xi)^2 + (y - eta)^2right)$$ and work from there. For instance,
$$frac{partial G}{partial x}(x,y) = frac{x-xi}{(x-xi)^2 + (y - eta)^2}$$ so that
$$ frac{partial^2 G}{partial x ^2}(x,y) = frac{ -(x-xi)^2 + (y-eta)^2}{(x-xi)^2 + (y - eta)^2}.$$
$endgroup$
Your calculation of the partial derivatives is wrong. The expression $(x,y) - (xi,eta)$ is a vector and doesn't make sense in a denominator. Instead you should write
$$G(x,y) = log sqrt{(x-xi)^2 + (y - eta)^2} = frac 12 log left( (x-xi)^2 + (y - eta)^2right)$$ and work from there. For instance,
$$frac{partial G}{partial x}(x,y) = frac{x-xi}{(x-xi)^2 + (y - eta)^2}$$ so that
$$ frac{partial^2 G}{partial x ^2}(x,y) = frac{ -(x-xi)^2 + (y-eta)^2}{(x-xi)^2 + (y - eta)^2}.$$
answered Dec 14 '18 at 17:58
Umberto P.Umberto P.
39.3k13166
39.3k13166
1
$begingroup$
Cheers mate, i was confused about the notation
$endgroup$
– pablo_mathscobar
Dec 14 '18 at 17:59
add a comment |
1
$begingroup$
Cheers mate, i was confused about the notation
$endgroup$
– pablo_mathscobar
Dec 14 '18 at 17:59
1
1
$begingroup$
Cheers mate, i was confused about the notation
$endgroup$
– pablo_mathscobar
Dec 14 '18 at 17:59
$begingroup$
Cheers mate, i was confused about the notation
$endgroup$
– pablo_mathscobar
Dec 14 '18 at 17:59
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3039641%2fwhy-does-logx-y-%25ce%25be-%25ce%25b7-satisfy-the-laplace-equation-for-all-x-y-ne%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown