$lim_{n to infty}(1+frac{1}{n^2})(1+frac{2}{n^2})…(1+frac{n}{n^2})=e^{frac{1}{2}}$.
$begingroup$
Here is the beginning of a proof:
Suppose $0<k leq n$,
$1+frac{1}{n}<(1+frac{k}{n^2})(1+frac{n+1-k}{n^2})=1+frac{n+1}{n^2}+frac{k(n+1-k)}{n^4}leq 1+frac{1}{n}+frac{1}{n^2}+frac{(n+1)^2}{4n^4}$.
I'm confused by the second inequality above.
real-analysis sequences-and-series inequality
$endgroup$
|
show 1 more comment
$begingroup$
Here is the beginning of a proof:
Suppose $0<k leq n$,
$1+frac{1}{n}<(1+frac{k}{n^2})(1+frac{n+1-k}{n^2})=1+frac{n+1}{n^2}+frac{k(n+1-k)}{n^4}leq 1+frac{1}{n}+frac{1}{n^2}+frac{(n+1)^2}{4n^4}$.
I'm confused by the second inequality above.
real-analysis sequences-and-series inequality
$endgroup$
$begingroup$
Are you interested in why $1+frac {n+1}{n^2}+frac {k(n+1-k)}{n^4} leq 1+frac 1n+frac 1{n^2}+frac {(n+1)^2}{4n^2}?$
$endgroup$
– Mohammad Zuhair Khan
Dec 14 '18 at 17:46
$begingroup$
yes, that is what I'm confused about
$endgroup$
– nafhgood
Dec 14 '18 at 17:47
2
$begingroup$
Well, $1+frac{n+1}{n^2}=1+frac 1n+frac 1{n^2}$ so we are interested in proving that $frac {k(n+1-k)}{n^4} leq frac {(n+1)^2}{4n^2}.$ Now we get $4k(n+1-k)leq n^2(n+1)^2$
$endgroup$
– Mohammad Zuhair Khan
Dec 14 '18 at 17:50
$begingroup$
The second inequality is just GM < AM with $k, n+1-k$
$endgroup$
– Naweed G. Seldon
Dec 14 '18 at 17:50
2
$begingroup$
Yes, that is what I meant. Sorry for the typo. Well, you can rearrange it to $k(n+1-k) leq frac {(n+1)^2}4$ and then we have $sqrt {k(n+1-k)} leq frac{n+1}2$. We can rewrite this as $sqrt {k(n+1-k)} leq frac{k+(n+1-k)}2$ and this can be proved by the AM-GM inequality by letting $k=a$ and $n+1-k=b$. According to AM-GM inequality, $frac {a+b}2 geq sqrt {ab}$. I basically paraphrased @NaweedG.Seldon .
$endgroup$
– Mohammad Zuhair Khan
Dec 14 '18 at 18:10
|
show 1 more comment
$begingroup$
Here is the beginning of a proof:
Suppose $0<k leq n$,
$1+frac{1}{n}<(1+frac{k}{n^2})(1+frac{n+1-k}{n^2})=1+frac{n+1}{n^2}+frac{k(n+1-k)}{n^4}leq 1+frac{1}{n}+frac{1}{n^2}+frac{(n+1)^2}{4n^4}$.
I'm confused by the second inequality above.
real-analysis sequences-and-series inequality
$endgroup$
Here is the beginning of a proof:
Suppose $0<k leq n$,
$1+frac{1}{n}<(1+frac{k}{n^2})(1+frac{n+1-k}{n^2})=1+frac{n+1}{n^2}+frac{k(n+1-k)}{n^4}leq 1+frac{1}{n}+frac{1}{n^2}+frac{(n+1)^2}{4n^4}$.
I'm confused by the second inequality above.
real-analysis sequences-and-series inequality
real-analysis sequences-and-series inequality
asked Dec 14 '18 at 17:44
nafhgoodnafhgood
1,805422
1,805422
$begingroup$
Are you interested in why $1+frac {n+1}{n^2}+frac {k(n+1-k)}{n^4} leq 1+frac 1n+frac 1{n^2}+frac {(n+1)^2}{4n^2}?$
$endgroup$
– Mohammad Zuhair Khan
Dec 14 '18 at 17:46
$begingroup$
yes, that is what I'm confused about
$endgroup$
– nafhgood
Dec 14 '18 at 17:47
2
$begingroup$
Well, $1+frac{n+1}{n^2}=1+frac 1n+frac 1{n^2}$ so we are interested in proving that $frac {k(n+1-k)}{n^4} leq frac {(n+1)^2}{4n^2}.$ Now we get $4k(n+1-k)leq n^2(n+1)^2$
$endgroup$
– Mohammad Zuhair Khan
Dec 14 '18 at 17:50
$begingroup$
The second inequality is just GM < AM with $k, n+1-k$
$endgroup$
– Naweed G. Seldon
Dec 14 '18 at 17:50
2
$begingroup$
Yes, that is what I meant. Sorry for the typo. Well, you can rearrange it to $k(n+1-k) leq frac {(n+1)^2}4$ and then we have $sqrt {k(n+1-k)} leq frac{n+1}2$. We can rewrite this as $sqrt {k(n+1-k)} leq frac{k+(n+1-k)}2$ and this can be proved by the AM-GM inequality by letting $k=a$ and $n+1-k=b$. According to AM-GM inequality, $frac {a+b}2 geq sqrt {ab}$. I basically paraphrased @NaweedG.Seldon .
$endgroup$
– Mohammad Zuhair Khan
Dec 14 '18 at 18:10
|
show 1 more comment
$begingroup$
Are you interested in why $1+frac {n+1}{n^2}+frac {k(n+1-k)}{n^4} leq 1+frac 1n+frac 1{n^2}+frac {(n+1)^2}{4n^2}?$
$endgroup$
– Mohammad Zuhair Khan
Dec 14 '18 at 17:46
$begingroup$
yes, that is what I'm confused about
$endgroup$
– nafhgood
Dec 14 '18 at 17:47
2
$begingroup$
Well, $1+frac{n+1}{n^2}=1+frac 1n+frac 1{n^2}$ so we are interested in proving that $frac {k(n+1-k)}{n^4} leq frac {(n+1)^2}{4n^2}.$ Now we get $4k(n+1-k)leq n^2(n+1)^2$
$endgroup$
– Mohammad Zuhair Khan
Dec 14 '18 at 17:50
$begingroup$
The second inequality is just GM < AM with $k, n+1-k$
$endgroup$
– Naweed G. Seldon
Dec 14 '18 at 17:50
2
$begingroup$
Yes, that is what I meant. Sorry for the typo. Well, you can rearrange it to $k(n+1-k) leq frac {(n+1)^2}4$ and then we have $sqrt {k(n+1-k)} leq frac{n+1}2$. We can rewrite this as $sqrt {k(n+1-k)} leq frac{k+(n+1-k)}2$ and this can be proved by the AM-GM inequality by letting $k=a$ and $n+1-k=b$. According to AM-GM inequality, $frac {a+b}2 geq sqrt {ab}$. I basically paraphrased @NaweedG.Seldon .
$endgroup$
– Mohammad Zuhair Khan
Dec 14 '18 at 18:10
$begingroup$
Are you interested in why $1+frac {n+1}{n^2}+frac {k(n+1-k)}{n^4} leq 1+frac 1n+frac 1{n^2}+frac {(n+1)^2}{4n^2}?$
$endgroup$
– Mohammad Zuhair Khan
Dec 14 '18 at 17:46
$begingroup$
Are you interested in why $1+frac {n+1}{n^2}+frac {k(n+1-k)}{n^4} leq 1+frac 1n+frac 1{n^2}+frac {(n+1)^2}{4n^2}?$
$endgroup$
– Mohammad Zuhair Khan
Dec 14 '18 at 17:46
$begingroup$
yes, that is what I'm confused about
$endgroup$
– nafhgood
Dec 14 '18 at 17:47
$begingroup$
yes, that is what I'm confused about
$endgroup$
– nafhgood
Dec 14 '18 at 17:47
2
2
$begingroup$
Well, $1+frac{n+1}{n^2}=1+frac 1n+frac 1{n^2}$ so we are interested in proving that $frac {k(n+1-k)}{n^4} leq frac {(n+1)^2}{4n^2}.$ Now we get $4k(n+1-k)leq n^2(n+1)^2$
$endgroup$
– Mohammad Zuhair Khan
Dec 14 '18 at 17:50
$begingroup$
Well, $1+frac{n+1}{n^2}=1+frac 1n+frac 1{n^2}$ so we are interested in proving that $frac {k(n+1-k)}{n^4} leq frac {(n+1)^2}{4n^2}.$ Now we get $4k(n+1-k)leq n^2(n+1)^2$
$endgroup$
– Mohammad Zuhair Khan
Dec 14 '18 at 17:50
$begingroup$
The second inequality is just GM < AM with $k, n+1-k$
$endgroup$
– Naweed G. Seldon
Dec 14 '18 at 17:50
$begingroup$
The second inequality is just GM < AM with $k, n+1-k$
$endgroup$
– Naweed G. Seldon
Dec 14 '18 at 17:50
2
2
$begingroup$
Yes, that is what I meant. Sorry for the typo. Well, you can rearrange it to $k(n+1-k) leq frac {(n+1)^2}4$ and then we have $sqrt {k(n+1-k)} leq frac{n+1}2$. We can rewrite this as $sqrt {k(n+1-k)} leq frac{k+(n+1-k)}2$ and this can be proved by the AM-GM inequality by letting $k=a$ and $n+1-k=b$. According to AM-GM inequality, $frac {a+b}2 geq sqrt {ab}$. I basically paraphrased @NaweedG.Seldon .
$endgroup$
– Mohammad Zuhair Khan
Dec 14 '18 at 18:10
$begingroup$
Yes, that is what I meant. Sorry for the typo. Well, you can rearrange it to $k(n+1-k) leq frac {(n+1)^2}4$ and then we have $sqrt {k(n+1-k)} leq frac{n+1}2$. We can rewrite this as $sqrt {k(n+1-k)} leq frac{k+(n+1-k)}2$ and this can be proved by the AM-GM inequality by letting $k=a$ and $n+1-k=b$. According to AM-GM inequality, $frac {a+b}2 geq sqrt {ab}$. I basically paraphrased @NaweedG.Seldon .
$endgroup$
– Mohammad Zuhair Khan
Dec 14 '18 at 18:10
|
show 1 more comment
3 Answers
3
active
oldest
votes
$begingroup$
Hint: By AM-GM Inequality
$$frac{k+ n+1-k}{2} geq sqrt{k(n+1-k)}$$
$endgroup$
add a comment |
$begingroup$
As an alternative, we have that
$$left(1+frac{1}{n^2}right)left(1+frac{2}{n^2}right)ldotsleft(1+frac{n}{n^2}right)=prod_{k=1}^{n}left(1+frac{k}{n^2}right)=e^{sum_{k=1}^{n} logleft(1+frac{k}{n^2}right) }$$
and
$$sum_{k=1}^{n} logleft(1+frac{k}{n^2}right)=sum_{k=1}^{n}left(frac{k}{n^2}+k^2Oleft(frac{1}{n^4}right)right)=frac1{n^2}sum_{k=1}^{n}k+Oleft(frac{1}{n^4}right)sum_{k=1}^{n}k^2to frac12$$
indeed
- $sum_{k=1}^{n}k=frac{n(n+1)}{2}implies frac1{n^2}sum_{k=1}^{n}k=frac{n(n+1)}{2n^2}to frac12$
- $sum_{k=1}^{n}k^2=frac{n(n+1)(2n+1)}{6}implies Oleft(frac{1}{n^4}right)sum_{k=1}^{n}k^2=Oleft(frac{1}{n}right)to 0$
$endgroup$
$begingroup$
Sorry, how do you get the first equality on the second line?
$endgroup$
– nafhgood
Dec 14 '18 at 18:17
$begingroup$
@mathnoob We have $A=e^{log A}$ and $log prod a_i = sum log a_i$.
$endgroup$
– gimusi
Dec 14 '18 at 18:32
$begingroup$
@mathnoob the series for logarithm: $log(1+x) = sum_{j=1}^infty frac{(-1)^{j+1}}{j} x^j$
$endgroup$
– ploosu2
Dec 14 '18 at 19:41
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
$ds{lim_{n to infty}pars{1 + {1 over n^{2}}}
pars{1 + {2 over n^{2}}}cdotspars{1 + {n over n^{2}}} = expo{1/2}: {LARGE ?}}$.
begin{align}
&bbox[#ffd,10px]{lim_{n to infty}pars{1 + {1 over n^{2}}}
pars{1 + {2 over n^{2}}}cdotspars{1 + {n over n^{2}}}} =
lim_{n to infty}prod_{k = 1}^{n}pars{1 + {k over n^{2}}}
\[5mm] = &
lim_{n to infty}{prod_{k = 1}^{n}pars{k + n^{2}} over
prod_{k = 1}^{n}n^{2}} =
lim_{n to infty}{pars{1 + n^{2}}^{largeoverline{n}} over pars{n^{2}}^{n}}
\[5mm] = &
lim_{n to infty}{Gammapars{1 + n^{2} + n}/Gammapars{1 + n^{2}} over n^{2n}} =
lim_{n to infty}{pars{n^{2} + n}! over n^{2n}pars{n^{2}}!}
\[5mm] = &
lim_{n to infty}
{root{2pi}pars{n^{2} + n}^{n^{2} + n + 1/2},
expo{-pars{n^{2} + n}} over
n^{2n}bracks{root{2pi}pars{n^{2}}^{n^{2} + 1/2}expo{-n^{2}}}} \[5mm] = &
lim_{n to infty}
{pars{n^{2}}^{n^{2} + n + 1/2}pars{1 + 1/n}^{n^{2} + n + 1/2},
expo{-n} over
n^{2n}pars{n^{2n^{2} + 1}}}
\[5mm] = &
lim_{n to infty}exppars{bracks{n^{2} + n + {1 over 2}}
lnpars{1 + {1 over n}} - n}
\[5mm] = &
lim_{n to infty}exppars{bracks{n^{2} + n + {1 over 2}}
bracks{{1 over n} - {1 over 2n^{2}}} - n} = bbx{expo{1/2}}
approx 1.6487
end{align}
Note that
$ds{pars{n^{2} + n + {1 over 2}}
lnpars{1 + {1 over n}} - n
,,,stackrel{mrm{as} n to infty}{sim},,,
{1 over 2} + {1 over 3n} - {1 over 6n^{2}}}$.
$endgroup$
$begingroup$
Sorry, What does $a^{overline{n}}$ mean?
$endgroup$
– nafhgood
Dec 14 '18 at 22:57
1
$begingroup$
@mathnoob It's the Raising Factorial. A shortcut notation for $displaystyle x^{largeoverline{n}} equiv xleft(,{x},right)left(,{x + 1},right)left(,{x + n - 1},right)$.
$endgroup$
– Felix Marin
Dec 15 '18 at 0:35
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3039690%2flim-n-to-infty1-frac1n21-frac2n2-1-fracnn2-e-f%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint: By AM-GM Inequality
$$frac{k+ n+1-k}{2} geq sqrt{k(n+1-k)}$$
$endgroup$
add a comment |
$begingroup$
Hint: By AM-GM Inequality
$$frac{k+ n+1-k}{2} geq sqrt{k(n+1-k)}$$
$endgroup$
add a comment |
$begingroup$
Hint: By AM-GM Inequality
$$frac{k+ n+1-k}{2} geq sqrt{k(n+1-k)}$$
$endgroup$
Hint: By AM-GM Inequality
$$frac{k+ n+1-k}{2} geq sqrt{k(n+1-k)}$$
answered Dec 14 '18 at 17:52
Naweed G. SeldonNaweed G. Seldon
1,304419
1,304419
add a comment |
add a comment |
$begingroup$
As an alternative, we have that
$$left(1+frac{1}{n^2}right)left(1+frac{2}{n^2}right)ldotsleft(1+frac{n}{n^2}right)=prod_{k=1}^{n}left(1+frac{k}{n^2}right)=e^{sum_{k=1}^{n} logleft(1+frac{k}{n^2}right) }$$
and
$$sum_{k=1}^{n} logleft(1+frac{k}{n^2}right)=sum_{k=1}^{n}left(frac{k}{n^2}+k^2Oleft(frac{1}{n^4}right)right)=frac1{n^2}sum_{k=1}^{n}k+Oleft(frac{1}{n^4}right)sum_{k=1}^{n}k^2to frac12$$
indeed
- $sum_{k=1}^{n}k=frac{n(n+1)}{2}implies frac1{n^2}sum_{k=1}^{n}k=frac{n(n+1)}{2n^2}to frac12$
- $sum_{k=1}^{n}k^2=frac{n(n+1)(2n+1)}{6}implies Oleft(frac{1}{n^4}right)sum_{k=1}^{n}k^2=Oleft(frac{1}{n}right)to 0$
$endgroup$
$begingroup$
Sorry, how do you get the first equality on the second line?
$endgroup$
– nafhgood
Dec 14 '18 at 18:17
$begingroup$
@mathnoob We have $A=e^{log A}$ and $log prod a_i = sum log a_i$.
$endgroup$
– gimusi
Dec 14 '18 at 18:32
$begingroup$
@mathnoob the series for logarithm: $log(1+x) = sum_{j=1}^infty frac{(-1)^{j+1}}{j} x^j$
$endgroup$
– ploosu2
Dec 14 '18 at 19:41
add a comment |
$begingroup$
As an alternative, we have that
$$left(1+frac{1}{n^2}right)left(1+frac{2}{n^2}right)ldotsleft(1+frac{n}{n^2}right)=prod_{k=1}^{n}left(1+frac{k}{n^2}right)=e^{sum_{k=1}^{n} logleft(1+frac{k}{n^2}right) }$$
and
$$sum_{k=1}^{n} logleft(1+frac{k}{n^2}right)=sum_{k=1}^{n}left(frac{k}{n^2}+k^2Oleft(frac{1}{n^4}right)right)=frac1{n^2}sum_{k=1}^{n}k+Oleft(frac{1}{n^4}right)sum_{k=1}^{n}k^2to frac12$$
indeed
- $sum_{k=1}^{n}k=frac{n(n+1)}{2}implies frac1{n^2}sum_{k=1}^{n}k=frac{n(n+1)}{2n^2}to frac12$
- $sum_{k=1}^{n}k^2=frac{n(n+1)(2n+1)}{6}implies Oleft(frac{1}{n^4}right)sum_{k=1}^{n}k^2=Oleft(frac{1}{n}right)to 0$
$endgroup$
$begingroup$
Sorry, how do you get the first equality on the second line?
$endgroup$
– nafhgood
Dec 14 '18 at 18:17
$begingroup$
@mathnoob We have $A=e^{log A}$ and $log prod a_i = sum log a_i$.
$endgroup$
– gimusi
Dec 14 '18 at 18:32
$begingroup$
@mathnoob the series for logarithm: $log(1+x) = sum_{j=1}^infty frac{(-1)^{j+1}}{j} x^j$
$endgroup$
– ploosu2
Dec 14 '18 at 19:41
add a comment |
$begingroup$
As an alternative, we have that
$$left(1+frac{1}{n^2}right)left(1+frac{2}{n^2}right)ldotsleft(1+frac{n}{n^2}right)=prod_{k=1}^{n}left(1+frac{k}{n^2}right)=e^{sum_{k=1}^{n} logleft(1+frac{k}{n^2}right) }$$
and
$$sum_{k=1}^{n} logleft(1+frac{k}{n^2}right)=sum_{k=1}^{n}left(frac{k}{n^2}+k^2Oleft(frac{1}{n^4}right)right)=frac1{n^2}sum_{k=1}^{n}k+Oleft(frac{1}{n^4}right)sum_{k=1}^{n}k^2to frac12$$
indeed
- $sum_{k=1}^{n}k=frac{n(n+1)}{2}implies frac1{n^2}sum_{k=1}^{n}k=frac{n(n+1)}{2n^2}to frac12$
- $sum_{k=1}^{n}k^2=frac{n(n+1)(2n+1)}{6}implies Oleft(frac{1}{n^4}right)sum_{k=1}^{n}k^2=Oleft(frac{1}{n}right)to 0$
$endgroup$
As an alternative, we have that
$$left(1+frac{1}{n^2}right)left(1+frac{2}{n^2}right)ldotsleft(1+frac{n}{n^2}right)=prod_{k=1}^{n}left(1+frac{k}{n^2}right)=e^{sum_{k=1}^{n} logleft(1+frac{k}{n^2}right) }$$
and
$$sum_{k=1}^{n} logleft(1+frac{k}{n^2}right)=sum_{k=1}^{n}left(frac{k}{n^2}+k^2Oleft(frac{1}{n^4}right)right)=frac1{n^2}sum_{k=1}^{n}k+Oleft(frac{1}{n^4}right)sum_{k=1}^{n}k^2to frac12$$
indeed
- $sum_{k=1}^{n}k=frac{n(n+1)}{2}implies frac1{n^2}sum_{k=1}^{n}k=frac{n(n+1)}{2n^2}to frac12$
- $sum_{k=1}^{n}k^2=frac{n(n+1)(2n+1)}{6}implies Oleft(frac{1}{n^4}right)sum_{k=1}^{n}k^2=Oleft(frac{1}{n}right)to 0$
edited Dec 15 '18 at 10:16
answered Dec 14 '18 at 17:56
gimusigimusi
92.8k84494
92.8k84494
$begingroup$
Sorry, how do you get the first equality on the second line?
$endgroup$
– nafhgood
Dec 14 '18 at 18:17
$begingroup$
@mathnoob We have $A=e^{log A}$ and $log prod a_i = sum log a_i$.
$endgroup$
– gimusi
Dec 14 '18 at 18:32
$begingroup$
@mathnoob the series for logarithm: $log(1+x) = sum_{j=1}^infty frac{(-1)^{j+1}}{j} x^j$
$endgroup$
– ploosu2
Dec 14 '18 at 19:41
add a comment |
$begingroup$
Sorry, how do you get the first equality on the second line?
$endgroup$
– nafhgood
Dec 14 '18 at 18:17
$begingroup$
@mathnoob We have $A=e^{log A}$ and $log prod a_i = sum log a_i$.
$endgroup$
– gimusi
Dec 14 '18 at 18:32
$begingroup$
@mathnoob the series for logarithm: $log(1+x) = sum_{j=1}^infty frac{(-1)^{j+1}}{j} x^j$
$endgroup$
– ploosu2
Dec 14 '18 at 19:41
$begingroup$
Sorry, how do you get the first equality on the second line?
$endgroup$
– nafhgood
Dec 14 '18 at 18:17
$begingroup$
Sorry, how do you get the first equality on the second line?
$endgroup$
– nafhgood
Dec 14 '18 at 18:17
$begingroup$
@mathnoob We have $A=e^{log A}$ and $log prod a_i = sum log a_i$.
$endgroup$
– gimusi
Dec 14 '18 at 18:32
$begingroup$
@mathnoob We have $A=e^{log A}$ and $log prod a_i = sum log a_i$.
$endgroup$
– gimusi
Dec 14 '18 at 18:32
$begingroup$
@mathnoob the series for logarithm: $log(1+x) = sum_{j=1}^infty frac{(-1)^{j+1}}{j} x^j$
$endgroup$
– ploosu2
Dec 14 '18 at 19:41
$begingroup$
@mathnoob the series for logarithm: $log(1+x) = sum_{j=1}^infty frac{(-1)^{j+1}}{j} x^j$
$endgroup$
– ploosu2
Dec 14 '18 at 19:41
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
$ds{lim_{n to infty}pars{1 + {1 over n^{2}}}
pars{1 + {2 over n^{2}}}cdotspars{1 + {n over n^{2}}} = expo{1/2}: {LARGE ?}}$.
begin{align}
&bbox[#ffd,10px]{lim_{n to infty}pars{1 + {1 over n^{2}}}
pars{1 + {2 over n^{2}}}cdotspars{1 + {n over n^{2}}}} =
lim_{n to infty}prod_{k = 1}^{n}pars{1 + {k over n^{2}}}
\[5mm] = &
lim_{n to infty}{prod_{k = 1}^{n}pars{k + n^{2}} over
prod_{k = 1}^{n}n^{2}} =
lim_{n to infty}{pars{1 + n^{2}}^{largeoverline{n}} over pars{n^{2}}^{n}}
\[5mm] = &
lim_{n to infty}{Gammapars{1 + n^{2} + n}/Gammapars{1 + n^{2}} over n^{2n}} =
lim_{n to infty}{pars{n^{2} + n}! over n^{2n}pars{n^{2}}!}
\[5mm] = &
lim_{n to infty}
{root{2pi}pars{n^{2} + n}^{n^{2} + n + 1/2},
expo{-pars{n^{2} + n}} over
n^{2n}bracks{root{2pi}pars{n^{2}}^{n^{2} + 1/2}expo{-n^{2}}}} \[5mm] = &
lim_{n to infty}
{pars{n^{2}}^{n^{2} + n + 1/2}pars{1 + 1/n}^{n^{2} + n + 1/2},
expo{-n} over
n^{2n}pars{n^{2n^{2} + 1}}}
\[5mm] = &
lim_{n to infty}exppars{bracks{n^{2} + n + {1 over 2}}
lnpars{1 + {1 over n}} - n}
\[5mm] = &
lim_{n to infty}exppars{bracks{n^{2} + n + {1 over 2}}
bracks{{1 over n} - {1 over 2n^{2}}} - n} = bbx{expo{1/2}}
approx 1.6487
end{align}
Note that
$ds{pars{n^{2} + n + {1 over 2}}
lnpars{1 + {1 over n}} - n
,,,stackrel{mrm{as} n to infty}{sim},,,
{1 over 2} + {1 over 3n} - {1 over 6n^{2}}}$.
$endgroup$
$begingroup$
Sorry, What does $a^{overline{n}}$ mean?
$endgroup$
– nafhgood
Dec 14 '18 at 22:57
1
$begingroup$
@mathnoob It's the Raising Factorial. A shortcut notation for $displaystyle x^{largeoverline{n}} equiv xleft(,{x},right)left(,{x + 1},right)left(,{x + n - 1},right)$.
$endgroup$
– Felix Marin
Dec 15 '18 at 0:35
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
$ds{lim_{n to infty}pars{1 + {1 over n^{2}}}
pars{1 + {2 over n^{2}}}cdotspars{1 + {n over n^{2}}} = expo{1/2}: {LARGE ?}}$.
begin{align}
&bbox[#ffd,10px]{lim_{n to infty}pars{1 + {1 over n^{2}}}
pars{1 + {2 over n^{2}}}cdotspars{1 + {n over n^{2}}}} =
lim_{n to infty}prod_{k = 1}^{n}pars{1 + {k over n^{2}}}
\[5mm] = &
lim_{n to infty}{prod_{k = 1}^{n}pars{k + n^{2}} over
prod_{k = 1}^{n}n^{2}} =
lim_{n to infty}{pars{1 + n^{2}}^{largeoverline{n}} over pars{n^{2}}^{n}}
\[5mm] = &
lim_{n to infty}{Gammapars{1 + n^{2} + n}/Gammapars{1 + n^{2}} over n^{2n}} =
lim_{n to infty}{pars{n^{2} + n}! over n^{2n}pars{n^{2}}!}
\[5mm] = &
lim_{n to infty}
{root{2pi}pars{n^{2} + n}^{n^{2} + n + 1/2},
expo{-pars{n^{2} + n}} over
n^{2n}bracks{root{2pi}pars{n^{2}}^{n^{2} + 1/2}expo{-n^{2}}}} \[5mm] = &
lim_{n to infty}
{pars{n^{2}}^{n^{2} + n + 1/2}pars{1 + 1/n}^{n^{2} + n + 1/2},
expo{-n} over
n^{2n}pars{n^{2n^{2} + 1}}}
\[5mm] = &
lim_{n to infty}exppars{bracks{n^{2} + n + {1 over 2}}
lnpars{1 + {1 over n}} - n}
\[5mm] = &
lim_{n to infty}exppars{bracks{n^{2} + n + {1 over 2}}
bracks{{1 over n} - {1 over 2n^{2}}} - n} = bbx{expo{1/2}}
approx 1.6487
end{align}
Note that
$ds{pars{n^{2} + n + {1 over 2}}
lnpars{1 + {1 over n}} - n
,,,stackrel{mrm{as} n to infty}{sim},,,
{1 over 2} + {1 over 3n} - {1 over 6n^{2}}}$.
$endgroup$
$begingroup$
Sorry, What does $a^{overline{n}}$ mean?
$endgroup$
– nafhgood
Dec 14 '18 at 22:57
1
$begingroup$
@mathnoob It's the Raising Factorial. A shortcut notation for $displaystyle x^{largeoverline{n}} equiv xleft(,{x},right)left(,{x + 1},right)left(,{x + n - 1},right)$.
$endgroup$
– Felix Marin
Dec 15 '18 at 0:35
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
$ds{lim_{n to infty}pars{1 + {1 over n^{2}}}
pars{1 + {2 over n^{2}}}cdotspars{1 + {n over n^{2}}} = expo{1/2}: {LARGE ?}}$.
begin{align}
&bbox[#ffd,10px]{lim_{n to infty}pars{1 + {1 over n^{2}}}
pars{1 + {2 over n^{2}}}cdotspars{1 + {n over n^{2}}}} =
lim_{n to infty}prod_{k = 1}^{n}pars{1 + {k over n^{2}}}
\[5mm] = &
lim_{n to infty}{prod_{k = 1}^{n}pars{k + n^{2}} over
prod_{k = 1}^{n}n^{2}} =
lim_{n to infty}{pars{1 + n^{2}}^{largeoverline{n}} over pars{n^{2}}^{n}}
\[5mm] = &
lim_{n to infty}{Gammapars{1 + n^{2} + n}/Gammapars{1 + n^{2}} over n^{2n}} =
lim_{n to infty}{pars{n^{2} + n}! over n^{2n}pars{n^{2}}!}
\[5mm] = &
lim_{n to infty}
{root{2pi}pars{n^{2} + n}^{n^{2} + n + 1/2},
expo{-pars{n^{2} + n}} over
n^{2n}bracks{root{2pi}pars{n^{2}}^{n^{2} + 1/2}expo{-n^{2}}}} \[5mm] = &
lim_{n to infty}
{pars{n^{2}}^{n^{2} + n + 1/2}pars{1 + 1/n}^{n^{2} + n + 1/2},
expo{-n} over
n^{2n}pars{n^{2n^{2} + 1}}}
\[5mm] = &
lim_{n to infty}exppars{bracks{n^{2} + n + {1 over 2}}
lnpars{1 + {1 over n}} - n}
\[5mm] = &
lim_{n to infty}exppars{bracks{n^{2} + n + {1 over 2}}
bracks{{1 over n} - {1 over 2n^{2}}} - n} = bbx{expo{1/2}}
approx 1.6487
end{align}
Note that
$ds{pars{n^{2} + n + {1 over 2}}
lnpars{1 + {1 over n}} - n
,,,stackrel{mrm{as} n to infty}{sim},,,
{1 over 2} + {1 over 3n} - {1 over 6n^{2}}}$.
$endgroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
$ds{lim_{n to infty}pars{1 + {1 over n^{2}}}
pars{1 + {2 over n^{2}}}cdotspars{1 + {n over n^{2}}} = expo{1/2}: {LARGE ?}}$.
begin{align}
&bbox[#ffd,10px]{lim_{n to infty}pars{1 + {1 over n^{2}}}
pars{1 + {2 over n^{2}}}cdotspars{1 + {n over n^{2}}}} =
lim_{n to infty}prod_{k = 1}^{n}pars{1 + {k over n^{2}}}
\[5mm] = &
lim_{n to infty}{prod_{k = 1}^{n}pars{k + n^{2}} over
prod_{k = 1}^{n}n^{2}} =
lim_{n to infty}{pars{1 + n^{2}}^{largeoverline{n}} over pars{n^{2}}^{n}}
\[5mm] = &
lim_{n to infty}{Gammapars{1 + n^{2} + n}/Gammapars{1 + n^{2}} over n^{2n}} =
lim_{n to infty}{pars{n^{2} + n}! over n^{2n}pars{n^{2}}!}
\[5mm] = &
lim_{n to infty}
{root{2pi}pars{n^{2} + n}^{n^{2} + n + 1/2},
expo{-pars{n^{2} + n}} over
n^{2n}bracks{root{2pi}pars{n^{2}}^{n^{2} + 1/2}expo{-n^{2}}}} \[5mm] = &
lim_{n to infty}
{pars{n^{2}}^{n^{2} + n + 1/2}pars{1 + 1/n}^{n^{2} + n + 1/2},
expo{-n} over
n^{2n}pars{n^{2n^{2} + 1}}}
\[5mm] = &
lim_{n to infty}exppars{bracks{n^{2} + n + {1 over 2}}
lnpars{1 + {1 over n}} - n}
\[5mm] = &
lim_{n to infty}exppars{bracks{n^{2} + n + {1 over 2}}
bracks{{1 over n} - {1 over 2n^{2}}} - n} = bbx{expo{1/2}}
approx 1.6487
end{align}
Note that
$ds{pars{n^{2} + n + {1 over 2}}
lnpars{1 + {1 over n}} - n
,,,stackrel{mrm{as} n to infty}{sim},,,
{1 over 2} + {1 over 3n} - {1 over 6n^{2}}}$.
edited Dec 14 '18 at 22:09
answered Dec 14 '18 at 22:03
Felix MarinFelix Marin
68.1k7109142
68.1k7109142
$begingroup$
Sorry, What does $a^{overline{n}}$ mean?
$endgroup$
– nafhgood
Dec 14 '18 at 22:57
1
$begingroup$
@mathnoob It's the Raising Factorial. A shortcut notation for $displaystyle x^{largeoverline{n}} equiv xleft(,{x},right)left(,{x + 1},right)left(,{x + n - 1},right)$.
$endgroup$
– Felix Marin
Dec 15 '18 at 0:35
add a comment |
$begingroup$
Sorry, What does $a^{overline{n}}$ mean?
$endgroup$
– nafhgood
Dec 14 '18 at 22:57
1
$begingroup$
@mathnoob It's the Raising Factorial. A shortcut notation for $displaystyle x^{largeoverline{n}} equiv xleft(,{x},right)left(,{x + 1},right)left(,{x + n - 1},right)$.
$endgroup$
– Felix Marin
Dec 15 '18 at 0:35
$begingroup$
Sorry, What does $a^{overline{n}}$ mean?
$endgroup$
– nafhgood
Dec 14 '18 at 22:57
$begingroup$
Sorry, What does $a^{overline{n}}$ mean?
$endgroup$
– nafhgood
Dec 14 '18 at 22:57
1
1
$begingroup$
@mathnoob It's the Raising Factorial. A shortcut notation for $displaystyle x^{largeoverline{n}} equiv xleft(,{x},right)left(,{x + 1},right)left(,{x + n - 1},right)$.
$endgroup$
– Felix Marin
Dec 15 '18 at 0:35
$begingroup$
@mathnoob It's the Raising Factorial. A shortcut notation for $displaystyle x^{largeoverline{n}} equiv xleft(,{x},right)left(,{x + 1},right)left(,{x + n - 1},right)$.
$endgroup$
– Felix Marin
Dec 15 '18 at 0:35
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3039690%2flim-n-to-infty1-frac1n21-frac2n2-1-fracnn2-e-f%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Are you interested in why $1+frac {n+1}{n^2}+frac {k(n+1-k)}{n^4} leq 1+frac 1n+frac 1{n^2}+frac {(n+1)^2}{4n^2}?$
$endgroup$
– Mohammad Zuhair Khan
Dec 14 '18 at 17:46
$begingroup$
yes, that is what I'm confused about
$endgroup$
– nafhgood
Dec 14 '18 at 17:47
2
$begingroup$
Well, $1+frac{n+1}{n^2}=1+frac 1n+frac 1{n^2}$ so we are interested in proving that $frac {k(n+1-k)}{n^4} leq frac {(n+1)^2}{4n^2}.$ Now we get $4k(n+1-k)leq n^2(n+1)^2$
$endgroup$
– Mohammad Zuhair Khan
Dec 14 '18 at 17:50
$begingroup$
The second inequality is just GM < AM with $k, n+1-k$
$endgroup$
– Naweed G. Seldon
Dec 14 '18 at 17:50
2
$begingroup$
Yes, that is what I meant. Sorry for the typo. Well, you can rearrange it to $k(n+1-k) leq frac {(n+1)^2}4$ and then we have $sqrt {k(n+1-k)} leq frac{n+1}2$. We can rewrite this as $sqrt {k(n+1-k)} leq frac{k+(n+1-k)}2$ and this can be proved by the AM-GM inequality by letting $k=a$ and $n+1-k=b$. According to AM-GM inequality, $frac {a+b}2 geq sqrt {ab}$. I basically paraphrased @NaweedG.Seldon .
$endgroup$
– Mohammad Zuhair Khan
Dec 14 '18 at 18:10