Nested homeomorphic sets












5












$begingroup$


Suppose we have a countable collection of sets ${U_n}$ such that $U_nsubset U_{n+1}$ for each $n$ and $U_n$ is homeomorphic to $mathbb{R}$ (or more generally, $X$) for each $n$, then is $bigcup_{n=1}^infty U_n$ homeomorphic to $mathbb{R}$ (or $X$)? I am not sure pushing $n$ to $infty$ works and I couldn't construct an explicit homeomorphism. Thanks!










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    Try $U_n=[0,n]$.
    $endgroup$
    – Gerry Myerson
    Jan 26 at 1:32
















5












$begingroup$


Suppose we have a countable collection of sets ${U_n}$ such that $U_nsubset U_{n+1}$ for each $n$ and $U_n$ is homeomorphic to $mathbb{R}$ (or more generally, $X$) for each $n$, then is $bigcup_{n=1}^infty U_n$ homeomorphic to $mathbb{R}$ (or $X$)? I am not sure pushing $n$ to $infty$ works and I couldn't construct an explicit homeomorphism. Thanks!










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    Try $U_n=[0,n]$.
    $endgroup$
    – Gerry Myerson
    Jan 26 at 1:32














5












5








5





$begingroup$


Suppose we have a countable collection of sets ${U_n}$ such that $U_nsubset U_{n+1}$ for each $n$ and $U_n$ is homeomorphic to $mathbb{R}$ (or more generally, $X$) for each $n$, then is $bigcup_{n=1}^infty U_n$ homeomorphic to $mathbb{R}$ (or $X$)? I am not sure pushing $n$ to $infty$ works and I couldn't construct an explicit homeomorphism. Thanks!










share|cite|improve this question











$endgroup$




Suppose we have a countable collection of sets ${U_n}$ such that $U_nsubset U_{n+1}$ for each $n$ and $U_n$ is homeomorphic to $mathbb{R}$ (or more generally, $X$) for each $n$, then is $bigcup_{n=1}^infty U_n$ homeomorphic to $mathbb{R}$ (or $X$)? I am not sure pushing $n$ to $infty$ works and I couldn't construct an explicit homeomorphism. Thanks!







general-topology






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 26 at 1:14









bof

51.9k558121




51.9k558121










asked Jan 26 at 1:10









J.DoeJ.Doe

7314




7314








  • 2




    $begingroup$
    Try $U_n=[0,n]$.
    $endgroup$
    – Gerry Myerson
    Jan 26 at 1:32














  • 2




    $begingroup$
    Try $U_n=[0,n]$.
    $endgroup$
    – Gerry Myerson
    Jan 26 at 1:32








2




2




$begingroup$
Try $U_n=[0,n]$.
$endgroup$
– Gerry Myerson
Jan 26 at 1:32




$begingroup$
Try $U_n=[0,n]$.
$endgroup$
– Gerry Myerson
Jan 26 at 1:32










2 Answers
2






active

oldest

votes


















6












$begingroup$

Let $$U_i = {e^{2pi i theta} -1 mid theta in [0,1-1/i)} cup {e^{2pi i theta} +1 mid theta in [1/2, 3/2-1/i)}.$$



Then every $U_i$ is a subset of the union of two circles that are glued together at a single point at the origin and is homeomorphic to $mathbb{R}$. The union $bigcup_i geq 1$ is equal to the union of the two circles.





Here's a simpler example for $Xcong [0,1)$ using the same idea. Let $$U_i = {e^{2pi itheta} mid theta in [0,1-1/i)}.$$



Then $U_i cong [0,1)$ for all $i geq 1$, but $bigcup_{i geq 1} U_i = S^1$.






share|cite|improve this answer











$endgroup$









  • 1




    $begingroup$
    I think this would be a better example if you simply gave your solution to the $mathbb R$ case (without the "wedge" language, which people may not understand).
    $endgroup$
    – zhw.
    Jan 26 at 2:15










  • $begingroup$
    @zhw. thanks for the suggestion. Hopefully the edit is a bit easier to read (unfortunately, it's not too easy to write the $U_i$s in a very simple way without talking about gluing/wedges).
    $endgroup$
    – Dan Rust
    Jan 26 at 2:23






  • 1




    $begingroup$
    Oh, right. Or $U_n={t:-2lt tle1}cup{e^{it}:0le tltpi-frac1n}$. By the way, you are using the letter $i$ for two different things.
    $endgroup$
    – bof
    Jan 26 at 2:47










  • $begingroup$
    Yes, I think the edit is good. +1
    $endgroup$
    – zhw.
    Jan 26 at 6:33



















0












$begingroup$

For $X=Bbb R$, it's homeomorphic with any open interval, and $U_nsubseteq U_{n+1}$ implies here that $U_n$ is a subinterval.

Thus, we can choose decreasing $a_n$ and increasing $b_n$ such that $U_n$ is homeomorphically mapped to $(a_n, b_n)$.

Then, $cup_nU_n$ will be homeomorphic with $(inf a_n, sup b_n) $.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    This does not appear to answer the question.
    $endgroup$
    – Dan Rust
    Jan 26 at 1:39






  • 1




    $begingroup$
    Your edit has not changed much.
    $endgroup$
    – Dan Rust
    Jan 26 at 1:59











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3087802%2fnested-homeomorphic-sets%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









6












$begingroup$

Let $$U_i = {e^{2pi i theta} -1 mid theta in [0,1-1/i)} cup {e^{2pi i theta} +1 mid theta in [1/2, 3/2-1/i)}.$$



Then every $U_i$ is a subset of the union of two circles that are glued together at a single point at the origin and is homeomorphic to $mathbb{R}$. The union $bigcup_i geq 1$ is equal to the union of the two circles.





Here's a simpler example for $Xcong [0,1)$ using the same idea. Let $$U_i = {e^{2pi itheta} mid theta in [0,1-1/i)}.$$



Then $U_i cong [0,1)$ for all $i geq 1$, but $bigcup_{i geq 1} U_i = S^1$.






share|cite|improve this answer











$endgroup$









  • 1




    $begingroup$
    I think this would be a better example if you simply gave your solution to the $mathbb R$ case (without the "wedge" language, which people may not understand).
    $endgroup$
    – zhw.
    Jan 26 at 2:15










  • $begingroup$
    @zhw. thanks for the suggestion. Hopefully the edit is a bit easier to read (unfortunately, it's not too easy to write the $U_i$s in a very simple way without talking about gluing/wedges).
    $endgroup$
    – Dan Rust
    Jan 26 at 2:23






  • 1




    $begingroup$
    Oh, right. Or $U_n={t:-2lt tle1}cup{e^{it}:0le tltpi-frac1n}$. By the way, you are using the letter $i$ for two different things.
    $endgroup$
    – bof
    Jan 26 at 2:47










  • $begingroup$
    Yes, I think the edit is good. +1
    $endgroup$
    – zhw.
    Jan 26 at 6:33
















6












$begingroup$

Let $$U_i = {e^{2pi i theta} -1 mid theta in [0,1-1/i)} cup {e^{2pi i theta} +1 mid theta in [1/2, 3/2-1/i)}.$$



Then every $U_i$ is a subset of the union of two circles that are glued together at a single point at the origin and is homeomorphic to $mathbb{R}$. The union $bigcup_i geq 1$ is equal to the union of the two circles.





Here's a simpler example for $Xcong [0,1)$ using the same idea. Let $$U_i = {e^{2pi itheta} mid theta in [0,1-1/i)}.$$



Then $U_i cong [0,1)$ for all $i geq 1$, but $bigcup_{i geq 1} U_i = S^1$.






share|cite|improve this answer











$endgroup$









  • 1




    $begingroup$
    I think this would be a better example if you simply gave your solution to the $mathbb R$ case (without the "wedge" language, which people may not understand).
    $endgroup$
    – zhw.
    Jan 26 at 2:15










  • $begingroup$
    @zhw. thanks for the suggestion. Hopefully the edit is a bit easier to read (unfortunately, it's not too easy to write the $U_i$s in a very simple way without talking about gluing/wedges).
    $endgroup$
    – Dan Rust
    Jan 26 at 2:23






  • 1




    $begingroup$
    Oh, right. Or $U_n={t:-2lt tle1}cup{e^{it}:0le tltpi-frac1n}$. By the way, you are using the letter $i$ for two different things.
    $endgroup$
    – bof
    Jan 26 at 2:47










  • $begingroup$
    Yes, I think the edit is good. +1
    $endgroup$
    – zhw.
    Jan 26 at 6:33














6












6








6





$begingroup$

Let $$U_i = {e^{2pi i theta} -1 mid theta in [0,1-1/i)} cup {e^{2pi i theta} +1 mid theta in [1/2, 3/2-1/i)}.$$



Then every $U_i$ is a subset of the union of two circles that are glued together at a single point at the origin and is homeomorphic to $mathbb{R}$. The union $bigcup_i geq 1$ is equal to the union of the two circles.





Here's a simpler example for $Xcong [0,1)$ using the same idea. Let $$U_i = {e^{2pi itheta} mid theta in [0,1-1/i)}.$$



Then $U_i cong [0,1)$ for all $i geq 1$, but $bigcup_{i geq 1} U_i = S^1$.






share|cite|improve this answer











$endgroup$



Let $$U_i = {e^{2pi i theta} -1 mid theta in [0,1-1/i)} cup {e^{2pi i theta} +1 mid theta in [1/2, 3/2-1/i)}.$$



Then every $U_i$ is a subset of the union of two circles that are glued together at a single point at the origin and is homeomorphic to $mathbb{R}$. The union $bigcup_i geq 1$ is equal to the union of the two circles.





Here's a simpler example for $Xcong [0,1)$ using the same idea. Let $$U_i = {e^{2pi itheta} mid theta in [0,1-1/i)}.$$



Then $U_i cong [0,1)$ for all $i geq 1$, but $bigcup_{i geq 1} U_i = S^1$.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Jan 26 at 2:21

























answered Jan 26 at 1:24









Dan RustDan Rust

22.8k114884




22.8k114884








  • 1




    $begingroup$
    I think this would be a better example if you simply gave your solution to the $mathbb R$ case (without the "wedge" language, which people may not understand).
    $endgroup$
    – zhw.
    Jan 26 at 2:15










  • $begingroup$
    @zhw. thanks for the suggestion. Hopefully the edit is a bit easier to read (unfortunately, it's not too easy to write the $U_i$s in a very simple way without talking about gluing/wedges).
    $endgroup$
    – Dan Rust
    Jan 26 at 2:23






  • 1




    $begingroup$
    Oh, right. Or $U_n={t:-2lt tle1}cup{e^{it}:0le tltpi-frac1n}$. By the way, you are using the letter $i$ for two different things.
    $endgroup$
    – bof
    Jan 26 at 2:47










  • $begingroup$
    Yes, I think the edit is good. +1
    $endgroup$
    – zhw.
    Jan 26 at 6:33














  • 1




    $begingroup$
    I think this would be a better example if you simply gave your solution to the $mathbb R$ case (without the "wedge" language, which people may not understand).
    $endgroup$
    – zhw.
    Jan 26 at 2:15










  • $begingroup$
    @zhw. thanks for the suggestion. Hopefully the edit is a bit easier to read (unfortunately, it's not too easy to write the $U_i$s in a very simple way without talking about gluing/wedges).
    $endgroup$
    – Dan Rust
    Jan 26 at 2:23






  • 1




    $begingroup$
    Oh, right. Or $U_n={t:-2lt tle1}cup{e^{it}:0le tltpi-frac1n}$. By the way, you are using the letter $i$ for two different things.
    $endgroup$
    – bof
    Jan 26 at 2:47










  • $begingroup$
    Yes, I think the edit is good. +1
    $endgroup$
    – zhw.
    Jan 26 at 6:33








1




1




$begingroup$
I think this would be a better example if you simply gave your solution to the $mathbb R$ case (without the "wedge" language, which people may not understand).
$endgroup$
– zhw.
Jan 26 at 2:15




$begingroup$
I think this would be a better example if you simply gave your solution to the $mathbb R$ case (without the "wedge" language, which people may not understand).
$endgroup$
– zhw.
Jan 26 at 2:15












$begingroup$
@zhw. thanks for the suggestion. Hopefully the edit is a bit easier to read (unfortunately, it's not too easy to write the $U_i$s in a very simple way without talking about gluing/wedges).
$endgroup$
– Dan Rust
Jan 26 at 2:23




$begingroup$
@zhw. thanks for the suggestion. Hopefully the edit is a bit easier to read (unfortunately, it's not too easy to write the $U_i$s in a very simple way without talking about gluing/wedges).
$endgroup$
– Dan Rust
Jan 26 at 2:23




1




1




$begingroup$
Oh, right. Or $U_n={t:-2lt tle1}cup{e^{it}:0le tltpi-frac1n}$. By the way, you are using the letter $i$ for two different things.
$endgroup$
– bof
Jan 26 at 2:47




$begingroup$
Oh, right. Or $U_n={t:-2lt tle1}cup{e^{it}:0le tltpi-frac1n}$. By the way, you are using the letter $i$ for two different things.
$endgroup$
– bof
Jan 26 at 2:47












$begingroup$
Yes, I think the edit is good. +1
$endgroup$
– zhw.
Jan 26 at 6:33




$begingroup$
Yes, I think the edit is good. +1
$endgroup$
– zhw.
Jan 26 at 6:33











0












$begingroup$

For $X=Bbb R$, it's homeomorphic with any open interval, and $U_nsubseteq U_{n+1}$ implies here that $U_n$ is a subinterval.

Thus, we can choose decreasing $a_n$ and increasing $b_n$ such that $U_n$ is homeomorphically mapped to $(a_n, b_n)$.

Then, $cup_nU_n$ will be homeomorphic with $(inf a_n, sup b_n) $.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    This does not appear to answer the question.
    $endgroup$
    – Dan Rust
    Jan 26 at 1:39






  • 1




    $begingroup$
    Your edit has not changed much.
    $endgroup$
    – Dan Rust
    Jan 26 at 1:59
















0












$begingroup$

For $X=Bbb R$, it's homeomorphic with any open interval, and $U_nsubseteq U_{n+1}$ implies here that $U_n$ is a subinterval.

Thus, we can choose decreasing $a_n$ and increasing $b_n$ such that $U_n$ is homeomorphically mapped to $(a_n, b_n)$.

Then, $cup_nU_n$ will be homeomorphic with $(inf a_n, sup b_n) $.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    This does not appear to answer the question.
    $endgroup$
    – Dan Rust
    Jan 26 at 1:39






  • 1




    $begingroup$
    Your edit has not changed much.
    $endgroup$
    – Dan Rust
    Jan 26 at 1:59














0












0








0





$begingroup$

For $X=Bbb R$, it's homeomorphic with any open interval, and $U_nsubseteq U_{n+1}$ implies here that $U_n$ is a subinterval.

Thus, we can choose decreasing $a_n$ and increasing $b_n$ such that $U_n$ is homeomorphically mapped to $(a_n, b_n)$.

Then, $cup_nU_n$ will be homeomorphic with $(inf a_n, sup b_n) $.






share|cite|improve this answer











$endgroup$



For $X=Bbb R$, it's homeomorphic with any open interval, and $U_nsubseteq U_{n+1}$ implies here that $U_n$ is a subinterval.

Thus, we can choose decreasing $a_n$ and increasing $b_n$ such that $U_n$ is homeomorphically mapped to $(a_n, b_n)$.

Then, $cup_nU_n$ will be homeomorphic with $(inf a_n, sup b_n) $.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Jan 26 at 1:51

























answered Jan 26 at 1:35









BerciBerci

60.9k23673




60.9k23673












  • $begingroup$
    This does not appear to answer the question.
    $endgroup$
    – Dan Rust
    Jan 26 at 1:39






  • 1




    $begingroup$
    Your edit has not changed much.
    $endgroup$
    – Dan Rust
    Jan 26 at 1:59


















  • $begingroup$
    This does not appear to answer the question.
    $endgroup$
    – Dan Rust
    Jan 26 at 1:39






  • 1




    $begingroup$
    Your edit has not changed much.
    $endgroup$
    – Dan Rust
    Jan 26 at 1:59
















$begingroup$
This does not appear to answer the question.
$endgroup$
– Dan Rust
Jan 26 at 1:39




$begingroup$
This does not appear to answer the question.
$endgroup$
– Dan Rust
Jan 26 at 1:39




1




1




$begingroup$
Your edit has not changed much.
$endgroup$
– Dan Rust
Jan 26 at 1:59




$begingroup$
Your edit has not changed much.
$endgroup$
– Dan Rust
Jan 26 at 1:59


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3087802%2fnested-homeomorphic-sets%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Probability when a professor distributes a quiz and homework assignment to a class of n students.

Aardman Animations

Are they similar matrix